People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tirri, Teija
Åbo Akademi University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Dry Reforming of Methane over Ni-Fe-Al Catalysts Prepared by Solution Combustion Synthesiscitations
- 2021On Laccase-Catalyzed Polymerization of Biorefinery Lignin Fractions and Alignment of Lignin Nanoparticles on the Nanocellulose SurfaceviaOne-Pot Water-Phase Synthesiscitations
- 2021On Laccase-Catalyzed Polymerization of Biorefinery Lignin Fractions and Alignment of Lignin Nanoparticles on the Nanocellulose Surface via One-Pot Water-Phase Synthesiscitations
- 2021Sulfenamides as Standalone Flame Retardants for Polystyrenecitations
- 2020Tailored thermosetting wood adhesive based on well-defined hardwood lignin fractionscitations
- 2018The Synthesis of Low-Viscosity Organotin-Free Moisture-Curable Silane-Terminated Poly(Urethane-Urea)scitations
- 2017Investigation on the Influence of Chain Extenders on the Performance of One-Component Moisture-Curable Polyurethane Adhesivescitations
- 2016Structure–Property Studies on a New Family of Halogen Free Flame Retardants Based on Sulfenamide and Related Structurescitations
- 2015The effect of core-shell particle morphology on adhesive properties of poly(styrene-co-butyl acrylate)citations
- 2013Flame retardant polyurethane nanocomposite: Study of clay dispersion and its synergistic effect with dolomitecitations
Places of action
Organizations | Location | People |
---|
article
Flame retardant polyurethane nanocomposite: Study of clay dispersion and its synergistic effect with dolomite
Abstract
<jats:title>Abstract</jats:title><jats:p>Polyurethane–clay nanocomposite adhesives were prepared by different synthetic routes and their microstructures were determined by X‐ray diffraction measurements and from transmission electron microscopy images. The preparation method of the polyurethane nanocomposite adhesives was systematically changed, that is, condensation either in the presence or absence of catalyst, concentration and type of nanoclay, premixing order of nanoclay (nanoclay was either premixed with the polyol or isocyanate part) and by using MDI surface treated nanoclays. Depending on the polymerization conditions cluster, intercalated, and exfoliated clay structures were obtained. The flame retardant properties of the manufactured nanocomposite adhesives and the synergistic effect of clay in combination with dolomite were investigated by cone calorimeter and UL 94 vertical burning tests. The results indicate that addition of nanoclay reduces burning time and the total heat evolved (THE) at flame out, and that the type of assembled clay structure (cluster, intercalated or exfoliated) had a significant effect on the flame retardant property. Nanocomposites with 3 wt % of clay loading gave the shortest burning time, the lowest THE and also UL 94 V‐2 ratings were reached, although the flame retardancy in terms of heat release rate and time to ignition was not improved. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</jats:p>