Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Canto, L. B.

  • Google
  • 13
  • 22
  • 477

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2022INJECTION OVERMOLDED POLYMER-METAL HYBRID STRUCTUREScitations
  • 2018Composite surface pre-treatments: improvement on adhesion mechanisms and mechanical performance of metal-composite friction spot joints with additional film interlayer25citations
  • 2017Friction riveting (‘FricRiveting’) of 6056 T6 aluminium alloy and polyamide 6: influence of rotational speed on the formation of the anchoring zone and on mechanical performance14citations
  • 2017On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints12citations
  • 2016Improvement of friction spot welding (FSpW) to join polyamide 6 and polyamide 66/carbon fibre laminate9citations
  • 2016Influence of Rotational Speed on the Microstructure and Mechanical Performance of Friction-Riveted Thermosetting Composite Joints - Influencia da Velocidade de Rotacao do Rebite na Microestrutura e no Desempenho Mecanico de Juntas de Composito Termofixo Rebitadas por Friccao2citations
  • 2016Influence of the Interlayer Film Thickness on the Mechanical Performance of AA2024-T3/CF-PPS Hybrid Joints Produced by Friction Spot Joining - Influencia da Espessura do Filme Polimerico Intermediario na Resistencia Mecanica de Juntas Hibridas de Alumínio 2024-T3 e CF-PPS Produzidas por Uniao Pontual por Friccao3citations
  • 2016Friction Spot Joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly(phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms122citations
  • 2015Friction spot joining of aluminum AA6181-T4 and carbon fiber-reinforced poly(phenylene sulfide): Effects of process parameters on the microstructure and mechanical strength158citations
  • 2015Friction spot welding of carbon fiber-reinforced polyamide 66 laminate57citations
  • 2014Improvement of the Friction Spot Welding (FSpW) to join Polyamide 6 and Polyamide 66/Carbon Fiber Laminate - Aperfeicoamento da Tecnica de Soldagem Pontual por Friccao (FSpW) para Uniao de Poliamida 6 e Laminado de Poliamida 66 com Fibra de Carbono6citations
  • 2014FricRiveting of aluminum 2024-T351 and polycarbonate: Temperature evolution, microstructure and mechanical performance41citations
  • 2013Reactive melt blending of PS‐POSS hybrid nanocomposites28citations

Places of action

Chart of shared publication
Sergio, T. Amancio-Filho
1 / 61 shared
Marcatto De Oliveira, Gean Henrique
1 / 5 shared
Amancio-Filho, S. T.
7 / 34 shared
Manente Andre, N.
1 / 2 shared
Scharnagl, N.
1 / 45 shared
Goushegir, S. M.
4 / 10 shared
Dos Santos, J. F.
11 / 117 shared
Amancio Filho, S. T.
4 / 5 shared
Proenca, B. C.
1 / 1 shared
Blaga, L.
3 / 9 shared
Zocoller Borba, N.
2 / 4 shared
Afonso, C. R. M.
1 / 4 shared
Goncalves, J.
3 / 3 shared
Andre, N. M.
2 / 3 shared
Hage, E. Jr.
2 / 5 shared
Esteves, J. V.
1 / 1 shared
Blaga, L. A.
1 / 2 shared
Rodrigues, C. F.
1 / 1 shared
Mauler, R. S.
1 / 2 shared
Bianchi, O.
1 / 1 shared
Barbosa, L. G.
1 / 1 shared
Oliveira, R. V. B.
1 / 1 shared
Chart of publication period
2022
2018
2017
2016
2015
2014
2013

Co-Authors (by relevance)

  • Sergio, T. Amancio-Filho
  • Marcatto De Oliveira, Gean Henrique
  • Amancio-Filho, S. T.
  • Manente Andre, N.
  • Scharnagl, N.
  • Goushegir, S. M.
  • Dos Santos, J. F.
  • Amancio Filho, S. T.
  • Proenca, B. C.
  • Blaga, L.
  • Zocoller Borba, N.
  • Afonso, C. R. M.
  • Goncalves, J.
  • Andre, N. M.
  • Hage, E. Jr.
  • Esteves, J. V.
  • Blaga, L. A.
  • Rodrigues, C. F.
  • Mauler, R. S.
  • Bianchi, O.
  • Barbosa, L. G.
  • Oliveira, R. V. B.
OrganizationsLocationPeople

article

Reactive melt blending of PS‐POSS hybrid nanocomposites

  • Mauler, R. S.
  • Bianchi, O.
  • Barbosa, L. G.
  • Canto, L. B.
  • Oliveira, R. V. B.
Abstract

<jats:title>Abstract</jats:title><jats:p>Hybrid nanocomposites of polystyrene (PS) and methacryl phenyl polyhedral oligomeric silsesquioxane (POSS) were synthesized by reactive melt blending in the mixing chamber of a torque rheometer using dicumyl peroxide (DCP) as a free radical initiator and styrene monomer as a chain transfer agent. The effects of mixing intensity and composition on the molecular structure and morphology of the PS‐POSS hybrid nanocomposites were investigated. The degree of POSS hybridization (α<jats:sub>POSS</jats:sub>) was found to increase with the POSS content, DCP/POSS ratio, and rotor speed. For the PS‐POSS materials processed in the absence of styrene monomer, an increase in the α<jats:sub>POSS</jats:sub> led to a reduction in the molecular weight by PS chain scission, as a consequence of the free radical initiation. On the other hand, the use of styrene monomer as a chain transfer agent reduces the steric hindrance in the hybridization reaction between POSS and PS, enhancing the degree of POSS hybridization and avoiding PS degradation. The PS‐POSS morphology consists of nanoscale POSS clusters and particles and microscale crystalline POSS aggregates. PS‐POSS with higher α<jats:sub>POSS</jats:sub> values and lower amounts of nonbound POSS showed improved POSS dispersion, characterized by smaller interfacial thickness (<jats:italic>t</jats:italic>) and greater Porod inhomogeneity lengths (<jats:italic>l</jats:italic><jats:sub><jats:italic>p</jats:italic></jats:sub>). The processing‐molecular structure–morphology correlations analyzed in this study allow the POSS dispersion level in the PS‐POSS materials to be tuned by controlling the reactive melt blending through the choice of the processing conditions. These insights are very useful for the development of PS‐POSS materials with optimized performance. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</jats:p>

Topics
  • nanocomposite
  • dispersion
  • cluster
  • melt
  • reactive
  • interfacial
  • molecular weight