People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Katančić, Zvonimir
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Pristine and UV-Weathered PET Microplastics as Water Contaminants: Appraising the Potential of the Fenton Process for Effective Remediationcitations
- 2024Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- 2022Intrinsically Stretchable Poly(3,4-ethylenedioxythiophene) Conducting Polymer Film for Flexible Electronicscitations
- 2021Solar Light Activation of Persulfate by TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub> Layered Composite Films for Degradation of Amoxicillin: Degradation Mechanism, Matrix Effects, and Toxicity Assessmentscitations
- 2021Solar Light Activation of Persulfate by TiO2 / Fe2O3 Layered Composite Films for Degradation of Amoxicillin: Degradation Mechanism, Matrix Effects, and Toxicity Assessmentscitations
- 2021Development of PE/PCL Bilayer Films Modified with Casein and Aluminum Oxidecitations
- 2019Efficiency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dyecitations
- 2018Fly ash supported photocatalytic nanocomposite poly(3,4‐ethylenedioxythiophene)/TiO<sub>2</sub> for azo dye removal under simulated solar irradiationcitations
- 2014Thermal decomposition of fire-retarded high-impact polystyrene and high-impact polystyrene/ethylene–vinyl acetate blend nanocomposites followed by thermal analysiscitations
- 2014Effect of modified nanofillers on fire retarded high-density polyethylene/wood compositescitations
- 2012Influence of calcium carbonate filler and mixing type process on structure and properties of styrene–acrylonitrile/ethylene–propylene–diene polymer blendscitations
- 2011Effect of preparation on morphology-properties relationships in SAN/EPDM/PCC compositescitations
Places of action
Organizations | Location | People |
---|
article
Influence of calcium carbonate filler and mixing type process on structure and properties of styrene–acrylonitrile/ethylene–propylene–diene polymer blends
Abstract
<jats:title>Abstract</jats:title><jats:p>The properties of styrene–acrylonitrile (SAN) and ethylene–propylene–diene (EPDM) blends containing different types of calcium carbonate filler were studied. The influence of mixing type process on the blend properties was also studied. Two different mixing processes were used. The first one includes mixing of all components together. The other process is a two‐step mixing procedure: masterbatch (MB; EPDM/SAN/filler blend) was prepared and then it was mixed with previously prepared polymer blend. Surface energy of samples was determined to predict the strength of interactions between polymer blend components and used fillers. The phase morphology of blends and their thermal and mechanical properties were studied. From the results, it can be concluded that the type of mixing process has a strong influence on the morphological, thermal, and mechanical properties of blends. The two‐step mixing process causes better dispersion of fillers in blends as well as better dispersion of EPDM in SAN matrix, and therefore, the finest morphology and improved properties are observed in blends with MB. It can be concluded that the type of mixing process and carefully chosen compatibilizer are the important factors for obtaining the improved compatibility of SAN/EPDM blends. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</jats:p>