People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shakoor, Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Fabrication of bi-functional samarium oxide/copper oxide nanocuboid electrocatalyst for electrochemical water splitting
- 2023Preparation and Numerical Optimization of TiO2:CdS Thin Films in Double Perovskite Solar Cellcitations
- 2022Effect of composition and microstructure on the rusting of MS rebars and ultimately their impact on mechanical behaviorcitations
- 2012Charge transport mechanism in intercalated polypyrrole aluminum‐pillared montmorillonite clay nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Charge transport mechanism in intercalated polypyrrole aluminum‐pillared montmorillonite clay nanocomposites
Abstract
<jats:title>Abstract</jats:title><jats:p>Nanocomposites based on intercalated conducting polypyrrole (PPy) into the galleries of inorganic aluminum‐pillared Montmorillonite (Al‐PMMT) clay with varying concentrations of Al‐PMMT were prepared by <jats:italic>in situ</jats:italic> chemical polymerization. The intercalation was confirmed by X‐ray diffraction pattern. Charge transport mechanism in these composites was investigated by temperature dependent direct current conductivity measurements. An increase in DC conductivity value on addition of (Al‐PMMT) clay in the composites at all temperatures and a transition from three‐dimensional (3D) Mott's variable range hopping (VRH) process in pristine PPy to one‐dimensional (1D) Mott's VRH process in the intercalated polymer composites has been observed. This transition in charge transport mechanism of PPy from 3D VRH to 1D VRH on intercalation has been interpreted in terms of straightening and linearization of polymer chains and decrease in inter‐chain interactions in the intercalated PPy. Enhancement in mechanical properties and increase in thermal stability of the nanocomposites was also observed with the increase in weight percentage of Al‐PMMT in PPy‐Al‐PMMT composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</jats:p>