Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barbale, M.

  • Google
  • 1
  • 7
  • 103

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012New multifunctional poly(lactide acid) composites: Mechanical, antibacterial, and degradation properties103citations

Places of action

Chart of shared publication
Zaccheo, S.
1 / 1 shared
Fortunati, E.
1 / 115 shared
Armentano, I.
1 / 122 shared
Kenny, José María
1 / 532 shared
Scavone, M.
1 / 1 shared
Iannoni, A.
1 / 13 shared
Visai, Livia
1 / 23 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Zaccheo, S.
  • Fortunati, E.
  • Armentano, I.
  • Kenny, José María
  • Scavone, M.
  • Iannoni, A.
  • Visai, Livia
OrganizationsLocationPeople

article

New multifunctional poly(lactide acid) composites: Mechanical, antibacterial, and degradation properties

  • Zaccheo, S.
  • Fortunati, E.
  • Armentano, I.
  • Kenny, José María
  • Scavone, M.
  • Barbale, M.
  • Iannoni, A.
  • Visai, Livia
Abstract

The aim of this work was to study the effect of the innovative combination of microcrystalline cellulose (MCC) and silver nanoparticles (Ag) on the poly (lactide acid) (PLA) composite properties, to modulate the PLA mechanical response and induce an antibacterial effect. The preparation and characterization of PLA-based composites with MCC and Ag nanoparticles by twin-screw extrusion followed by injection molding is reported. A film procedure was also performed to obtain PLA and PLA composite films with a thickness ranged between 20 and 60 lm. The analysis of disintegrability in composting conditions by means of visual, morphological, thermal, and chemical investigations was done to gain insights into the post-use degradation processes. Tensile test demonstrated the MCC reinforcing effect, while a bactericidal activity of silver-based composites against a Gram-negative bacteria (Escherichia coli) and a Gram-positive bacteria (Staphylococcus aureus) was detected at any time points and temperatures analyzed. Moreover, the disintegrability in composting showed that MCC is able to promote the degradation process. The combination of MCC and Ag nanoparticles in PLA polymer matrix offers promising perspectives to realize multifunctional ternary composites with good mechanical response and antibacterial effect, maintaining the optical transparency and the disintegrability, hence suitable for packaging applications

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • silver
  • extrusion
  • composite
  • injection molding
  • cellulose