People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cristea, Mariana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applicationscitations
- 2023Investigating a shape memory epoxy resin and its application to engineering shape-morphing devices empowered through kinematic chains and compliant jointscitations
- 2020Dynamic Mechanical Analysis Investigations of PLA-Based Renewable Materials: How Are They Useful?citations
- 2016Structure–property relationship of sodium deoxycholate based poly(ester ether)urethane ionomers for biomedical applicationscitations
- 2014Well-defined silicone–titania composites with good performances in actuation and energy harvestingcitations
- 2012Thermal, dynamic mechanical, and dielectric analyses of some polyurethane biocompositescitations
- 2012Poly(ether imide)s containing cyano substituents and thin films made from themcitations
- 2011Thermal and electrical properties of nitrile‐containing polyimide/BaTiO<sub>3</sub> composite filmscitations
- 2009Dynamic Mechanical Analysis of Polyurethane-Epoxy Interpenetrating Polymer Networkscitations
- 2009Composite materials based on polydimethylsiloxane and <i>in situ</i> generated silica by using the sol–gel techniquecitations
- 2009Thermal and electrical properties of copoly(1,3,4‐oxadiazole‐ethers) containing fluorene groupscitations
- 2009Polysiloxane‐lignin compositescitations
Places of action
Organizations | Location | People |
---|
article
Thermal and electrical properties of copoly(1,3,4‐oxadiazole‐ethers) containing fluorene groups
Abstract
<jats:title>Abstract</jats:title><jats:p>A series of aromatic copolyethers containing 1,3,4‐oxadiazole rings and fluorene groups was prepared by nucleophilic substitution polymerization technique of 9,9‐bis(4‐hydroxyphenyl)fluorene, <jats:bold>1</jats:bold>, or of different amounts of <jats:bold>1</jats:bold> and an aromatic bisphenol, such as 4,4′‐isopropylidenediphenol or phenolphthalein, with 2,5‐bis(<jats:italic>p</jats:italic>‐fluorophenyl)‐1,3,4‐oxadiazole. The polymers were easily soluble in polar solvents like <jats:italic>N</jats:italic>‐methylpyrrolidone, <jats:italic>N,N</jats:italic>‐dimethylacetamide, <jats:italic>N,N</jats:italic>‐dimethylformamide, and chloroform and can be cast from solutions into thin flexible films. They showed high thermal stability, with decomposition temperature being above 425°C. The polymers exhibited a glass‐transition temperature in the range of 195–295°C, with a reasonable interval between glass‐transition and decomposition temperature. Electrical insulating properties of some polymer films were evaluated on the basis of dielectric constant and dielectric loss and their variation with frequency and temperature. The values of the dielectric constant at 10 kHz and 20°C were in the range of 3.16–3.25. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009</jats:p>