People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Häussler, L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Electron beam treatment of polyacrylonitrile copolymer above the glass transition temperature in air and nitrogen atmospherecitations
- 2010Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubescitations
- 2009Comparison of tensile, thermal, and thermo‐mechanical properties of polyester filaments having different cross‐sectional shapecitations
- 2008Properties of segmented block copolymers in PEEK/PSU blendscitations
- 2008Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrixcitations
Places of action
Organizations | Location | People |
---|
article
Comparison of tensile, thermal, and thermo‐mechanical properties of polyester filaments having different cross‐sectional shape
Abstract
<jats:title>Abstract</jats:title><jats:p>One of the most important morphological features of fibers is their cross‐sectional shape. Nowadays, the circular fiber cross‐section is the most common shape of melt‐spun man‐made fibers. Other shapes are beginning to emerge for a variety of reasons such as performance, comfort, pilling propensity, bulkiness, tactility, processing etc. The filaments' cross‐section can be easily varied by changing the spinneret hole shape. Synthetic fibers that are predominantly spun by the melt spinning method with spinnerets having the noncircular hole geometry are called profiled or noncircular fibers. Modifications of the fiber cross‐section allow designing surface properties in yarn and fabric. However, the effect of profiled fibers on yarn properties has not been well documented yet. In this article, the influence of different filament cross‐section geometry on fiber properties was studied. PET (polyethylene terephthalate) filament yarns having two different cross‐sectional shaped filaments, circular and cruciform, were manufactured by melt spinning. Differences in tensile properties of filament yarn and as well as of individual filament depending on the cross‐sectional type were studied and revealed. More over, thermal and thermomechanical properties of filament yarn of both the cross‐sections were studied and revealed by DSC and TMA method, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009</jats:p>