Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jones, Stuart

  • Google
  • 2
  • 9
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Ion-Pairing with Spermine Targets Theophylline to the Lungs via the Polyamine Transport System14citations
  • 2005Biocompatible polymer blends: Effects of physical processing on the molecular interaction of poly(vinyl alcohol) and poly(vinyl pyrrolidone)29citations

Places of action

Chart of shared publication
Corno, Benedetta M. Dal
1 / 1 shared
Page, Clive Peter
1 / 1 shared
Chana, Jasminder
1 / 1 shared
Benaouda, Faiza
1 / 1 shared
Hider, Robert C.
1 / 3 shared
Forbes, Ben
1 / 3 shared
Martin, G. P.
1 / 5 shared
Royall, Paul G.
1 / 8 shared
Brown, M. B.
1 / 1 shared
Chart of publication period
2018
2005

Co-Authors (by relevance)

  • Corno, Benedetta M. Dal
  • Page, Clive Peter
  • Chana, Jasminder
  • Benaouda, Faiza
  • Hider, Robert C.
  • Forbes, Ben
  • Martin, G. P.
  • Royall, Paul G.
  • Brown, M. B.
OrganizationsLocationPeople

article

Biocompatible polymer blends: Effects of physical processing on the molecular interaction of poly(vinyl alcohol) and poly(vinyl pyrrolidone)

  • Martin, G. P.
  • Jones, Stuart
  • Royall, Paul G.
  • Brown, M. B.
Abstract

Blending is a very effective method for manufacturing new polymeric materials; however, the process used to combine two polymers can influence the physicochemical properties of the final product. As such, the aim of this study was to investigate how the rapid removal of a solvent from a composite by the spray drying of partially hydrolyzed poly(vinyl alcohol) (PVA)/poly(vinyl pyrrolidone) (PVP) altered the solid-state properties of the material compared to casting the blend within a film. Although thermal analysis showed that PVP acted as a plasticizer, reducing the melting point of PVA, spray drying the product rather than using a film-casting procedure improved its solid-state stability (increasing the glass transition) and resulted in the formation of a second crystalline phase within the material. Spectroscopic studies suggested that the manufacturing-induced variance in the solid-state properties of the PVA/PVP blends originated from structural differences in the composite caused by the processing method employed to form the blend. Although blending should still be considered a viable method of generating novel polymeric material, this study illustrated that through careful manipulation of the actual manufacturing process, the solid-state properties of the product can be altered. This could open a whole range of novel applications for traditionally used polymer composites. (c) 2005 Wiley Periodicals, Inc

Topics
  • impedance spectroscopy
  • crystalline phase
  • glass
  • glass
  • composite
  • thermal analysis
  • casting
  • alcohol
  • drying
  • polymer blend