Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arman, Hadi

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Cadmium (II) metal–organic architecture based on versatile multi‐N‐donor “3,5‐diaminotriazole” and dicarboxylate spacer: Synthesis, crystal structure, and its photocatalytic degradation of organic dye2citations

Places of action

Chart of shared publication
Alsalme, Ali
1 / 7 shared
Paul, Anup
1 / 6 shared
Abdulwahab, Ahmed
1 / 1 shared
Almuryyi, Nouf
1 / 1 shared
Alhamed, Afnan
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Alsalme, Ali
  • Paul, Anup
  • Abdulwahab, Ahmed
  • Almuryyi, Nouf
  • Alhamed, Afnan
OrganizationsLocationPeople

article

Cadmium (II) metal–organic architecture based on versatile multi‐N‐donor “3,5‐diaminotriazole” and dicarboxylate spacer: Synthesis, crystal structure, and its photocatalytic degradation of organic dye

  • Alsalme, Ali
  • Arman, Hadi
  • Paul, Anup
  • Abdulwahab, Ahmed
  • Almuryyi, Nouf
  • Alhamed, Afnan
Abstract

<jats:p>Herein, we have designed polyfunctional materials of d<jats:sup>10</jats:sup>‐configuration Cd (II) “<jats:bold>Cd‐CP</jats:bold>.” The coordination polymer <jats:bold>Cd‐CP</jats:bold> was synthesized using benzene‐1,4‐dicarboxylic acid and 3,5‐diaminotriazole via solvothermal reaction. The <jats:bold>Cd‐CP</jats:bold> has been fully characterized by using single X‐ray crystallography, thermogravimetric analysis (TGA), Fourier transform–infrared (FT‐IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) analysis. Single crystal X‐ray crystallography revealed that the <jats:bold>CP‐Cd</jats:bold> crystallized in triclinic space group <jats:italic>P</jats:italic> – 1 with the chemical composition [(BDC)(DAT)<jats:sub>2</jats:sub>Cd<jats:sub>2</jats:sub>Cl] (CH<jats:sub>3</jats:sub>)<jats:sub>2</jats:sub> NH<jats:sub>2</jats:sub><jats:sup>+</jats:sup> · H<jats:sub>2</jats:sub>O. The present study investigated the impact of different reaction parameters, including the concentration of MG, the dosage of catalyst, and the duration of irradiation, on the outcome demonstrating a high level of photocatalytic efficacy at 99.19% under visible light irradiation. The obtained kinetic data exhibited conformity with a pseudo‐first‐order model, indicating that the rate‐determining step is likely to be photo‐absorption. The value of the apparent rate constant was found to be 0.019 min<jats:sup>−1</jats:sup> for 50 mg L<jats:sup>−1</jats:sup>, 0.016 min<jats:sup>−1</jats:sup> for 100 mg L<jats:sup>−1</jats:sup>, and 0.015 min<jats:sup>−1</jats:sup> for 150 mg L<jats:sup>−1</jats:sup> MG concentration. The corresponding half‐life time was found to be 36.44, 43.31, and 46.20 min with values of correlation coefficient (<jats:italic>R</jats:italic><jats:sup>2</jats:sup>) as 0.99, 0.93, and 0.98, respectively. Moreover, a trapping experiment was conducted to demonstrate that hydroxy radicals (•OH) are the principal reactive oxygen species (ROS) responsible for the degradation of MG. The results of the total organic carbon (TOC) study indicated a mineralization value of around 89%, suggesting that the dye has been completely degraded into non‐toxic by‐products such as carbon dioxide (CO<jats:sub>2</jats:sub>) and water (H<jats:sub>2</jats:sub>O).</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • single crystal
  • Carbon
  • scanning electron microscopy
  • experiment
  • Oxygen
  • reactive
  • chemical composition
  • thermogravimetry
  • Raman spectroscopy
  • space group
  • Cadmium