People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chen, Xi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Finite‐Element Analysis of an Antagonistic Bistable Shape Memory Alloy Beam Actuator
- 2024A Methodology for Robust Multislice Ptychographycitations
- 2024Strategic Fabrication of Au4Cu2 NC/ZIF-8 Composite Via In Situ Integration Technique for Enhanced Energy Storage Applicationscitations
- 2024On the importance of the cracking process description for dynamic crack initiation simulation
- 2024In situ synthesis of oriented Zn-Mn-Co-telluride on precursor free CuOcitations
- 2024Water‐Vapor Responsive Metallo‐Peptide Nanofiberscitations
- 2024Roadmap on optical communicationscitations
- 2023Cryogenic characteristics of graphene composites—evolution from thermal conductors to thermal insulatorscitations
- 20232D Si-Ge layered materials as anodes for alkali-cation (Na+, K+) batteriescitations
- 2023Experimental and theoretical insights of binder-free magnesium nickel cobalt selenide star-like nanostructure as electrodecitations
- 2023Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage applicationcitations
- 2023Understanding the Diffusion-Dominated Properties of MOF-Derived Ni–Co–Se/C on CuO Scaffold Electrode using Experimental and First Principle Studycitations
- 2023Grain size in low loss superconducting Ta thin films on c axis sapphirecitations
- 2023Bistable Actuation Based on Antagonistic Buckling SMA Beamscitations
- 2022Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te)citations
- 2022Factors affecting the growth formation of nanostructures and their impact on electrode materialscitations
- 2021Binder-free trimetallic phosphate nanosheets as an electrodecitations
- 2019Nonlinear electrical conductivity through the thickness of multidirectional carbon fiber compositescitations
- 2015Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applicationscitations
- 2015Biomimetic Mineralization of Recombinamer-Based Hydrogels toward Controlled Morphologies and High Mineral Densitycitations
Places of action
Organizations | Location | People |
---|
article
Water‐Vapor Responsive Metallo‐Peptide Nanofibers
Abstract
<jats:p>Short peptides are versatile molecules for the construction of supramolecular materials. Most reported peptide materials are hydrophobic, stiff, and show limited response to environmental conditions in the solid‐state. Herein, we describe a design strategy for minimalistic supramolecular metallo‐peptide nanofibers that, depending on their sequence, change stiffness, or reversibly assemble in the solid‐state, in response to changes in relative humidity (RH). We tested a series of histidine (H) containing dipeptides with varying hydrophobicity, XH, where X is G, A, L, Y (glycine, alanine, leucine, and tyrosine). The one‐dimensional fiber formation is supported by metal coordination and dynamic H‐bonds. Solvent conditions were identified where GH/Zn and AH/Zn formed gels that upon air‐drying gave rise to nanofibers. Upon exposure of the nanofiber networks to increasing RH, a reduction in stiffness was observed with GH/Zn fibers reversibly (dis‐)assembled at 60‐70% RH driven by a rebalancing of H‐bonding interactions between peptides and water. When these metallo‐peptide nanofibers were deposited on the surface of polyimide films and exposed to varying RH, peptide/water‐vapor interactions in the solid‐state mechanically transferred to the polymer film, leading to the rapid and reversible folding‐unfolding of the films, thus demonstrating RH‐responsive actuation.</jats:p>