People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
García, Fátima
Universidad Complutense de Madrid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Supramolecular Block Copolymers from Tricarboxamides. Biasing Co‐assembly by the Incorporation of Pyridine Rings
Abstract
<jats:title>Abstract</jats:title><jats:p>The synthesis of a series of triangular‐shaped tricarboxamides endowed with three picoline or nicotine units (compounds <jats:bold>2</jats:bold> and <jats:bold>3</jats:bold>, respectively) or just one nicotine unit (compound <jats:bold>4</jats:bold>) is reported, and their self‐assembling features investigated. The pyridine rings make compounds <jats:bold>2</jats:bold>–<jats:bold>4</jats:bold> electronically complementary with our previously reported oligo(phenylene ethynylene)tricarboxamides (OPE‐TA) <jats:bold>1</jats:bold> to form supramolecular copolymers. <jats:italic>C<jats:sub>3</jats:sub></jats:italic>‐symmetric tricarboxamide <jats:bold>2</jats:bold> forms highly stable intramolecular five‐membered pseudocycles that impede its supramolecular polymerization into <jats:bold>poly‐2</jats:bold> and the co‐assembly with <jats:bold>1</jats:bold> to yield copolymer <jats:bold>poly‐1‐co‐2</jats:bold>. On the other hand, <jats:italic>C<jats:sub>3</jats:sub></jats:italic>‐symmetric tricarboxamide <jats:bold>3</jats:bold> readily forms <jats:bold>poly‐3</jats:bold> with great stability but unable to form helical supramolecular polymers despite the presence of the peripheral chiral side chains. The copolymer <jats:bold>poly‐1‐co‐3</jats:bold> can only be obtained by a previous complete disassembly of the constitutive homopolymers in CHCl<jats:sub>3</jats:sub>. Helical <jats:bold>poly‐1‐co‐3</jats:bold> arises in a process involving the transfer of the helicity from racemic <jats:bold>poly‐1</jats:bold> to <jats:bold>poly‐3</jats:bold>, and the amplification of asymmetry from chiral <jats:bold>poly‐3</jats:bold> to <jats:bold>poly‐1</jats:bold>. Importantly, <jats:italic>C<jats:sub>2v</jats:sub></jats:italic>‐symmetric <jats:bold>4</jats:bold>, endowed with only one nicotinamide moiety and three chiral side chains, self‐assembles into a <jats:italic>P</jats:italic>‐type helical supramolecular polymer (<jats:bold>poly‐4</jats:bold>) in a thermodynamically controlled cooperative process. The combination of <jats:bold>poly‐1</jats:bold> and <jats:bold>poly‐4</jats:bold> generates chiral supramolecular copolymer <jats:bold>poly‐1‐co‐4</jats:bold>, whose blocky microstructure has been investigated by applying the previously reported supramolecular copolymerization model.</jats:p>