Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Benavides, Paola Andrea

  • Google
  • 2
  • 1
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Electrically Conductive π‐Intercalated Graphitic Metal‐Organic Framework Containing Alternate π‐Donor/Acceptor Stacks8citations
  • 2022Iodine-induced electrical conductivity of novel columnar lanthanide metal–organic frameworks based on a butterfly-shaped π-extended tetrathiafulvalene ligand3citations

Places of action

Chart of shared publication
Yadav, Ashok
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Yadav, Ashok
OrganizationsLocationPeople

article

Electrically Conductive π‐Intercalated Graphitic Metal‐Organic Framework Containing Alternate π‐Donor/Acceptor Stacks

  • Yadav, Ashok
  • Benavides, Paola Andrea
Abstract

<jats:title>Abstract</jats:title><jats:p>Two‐dimensional graphitic metal–organic frameworks (GMOF) often display impressive electrical conductivity chiefly due to efficient through‐bond in‐plane charge transport, however, less efficient out‐of‐plane conduction across the stacked layers creates large disparity between two orthogonal conduction pathways and dampens their bulk conductivity. To address this issue and engineer higher bulk conductivity in 2D GMOFs, we have constructed via an elegant bottom‐up method the first π‐intercalated GMOF (iGMOF1) featuring built‐in alternate π‐donor/acceptor (π‐D/A) stacks of Cu<jats:sup>II</jats:sup>‐coordinated electron‐rich hexaaminotriphenylene (HATP) ligands and non‐coordinatively intercalated π‐acidic hexacyano‐triphenylene (HCTP) molecules, which facilitated out‐of‐plane charge transport while the hexagonal Cu<jats:sub>3</jats:sub>(HATP)<jats:sub>2</jats:sub> scaffold maintained in‐plane conduction. As a result, iGMOF1 attained an order of magnitude higher bulk electrical conductivity and much smaller activation energy than Cu<jats:sub>3</jats:sub>(HATP)<jats:sub>2</jats:sub> (σ=25 vs. 2 S m<jats:sup>−1</jats:sup>, <jats:italic>E</jats:italic><jats:sub>a</jats:sub>=36 vs. 65 meV), demostrating that simultaneous in‐plane (through‐bond) and out‐of‐plane (through πD/A stacks) charge transport can generate higher electrical conductivity in novel iGMOFs.</jats:p>

Topics
  • laser emission spectroscopy
  • activation
  • electrical conductivity