People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ganley, Connor
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2024Solution‐Doped Donor–Acceptor Copolymers Based on Diketopyrrolopyrrole and 3, 3′‐Bis (2‐(2‐(2‐Methoxyethoxy) Ethoxy) ethoxy)‐2, 2′‐Bithiophene Exhibiting Outstanding Thermoelectric Power Factors with <i>p</i>‐Dopantscitations
- 2023Blended Conjugated Host and Unconjugated Dopant Polymers Towards N‐type All‐Polymer Conductors and High‐ZT Thermoelectricscitations
Places of action
Organizations | Location | People |
---|
article
Blended Conjugated Host and Unconjugated Dopant Polymers Towards N‐type All‐Polymer Conductors and High‐ZT Thermoelectrics
Abstract
<jats:title>Abstract</jats:title><jats:p>N‐Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N‐type polymers with high crystallinity and order are generally used for high‐conductivity (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/anie202219313-math-0001.png" xlink:title="urn:x-wiley:14337851:media:anie202219313:anie202219313-math-0001" /> ) organic conductors. Few n‐type polymers with only short‐range lamellar stacking for high‐conductivity materials have been reported. Here, we describe an n‐type short‐range lamellar‐stacked all‐polymer thermoelectric system with highest <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/anie202219313-math-0002.png" xlink:title="urn:x-wiley:14337851:media:anie202219313:anie202219313-math-0002" />of 78 S<jats:sup>−1</jats:sup>, power factor (<jats:italic>PF</jats:italic>) of 163 μW m<jats:sup>−1</jats:sup> K<jats:sup>−2</jats:sup>, and maximum Figure of merit (<jats:italic>ZT</jats:italic>) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (<jats:italic>S</jats:italic>) absolute values relative to <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/anie202219313-math-0003.png" xlink:title="urn:x-wiley:14337851:media:anie202219313:anie202219313-math-0003" /> , and atypical decreased thermal conductivity (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/anie202219313-math-0004.png" xlink:title="urn:x-wiley:14337851:media:anie202219313:anie202219313-math-0004" /> ) with increased doping ratio contribute to the promising performance.</jats:p>