Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thon, Susanna M.

  • Google
  • 1
  • 14
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Blended Conjugated Host and Unconjugated Dopant Polymers Towards N‐type All‐Polymer Conductors and High‐ZT Thermoelectrics24citations

Places of action

Chart of shared publication
Tiernan, Emma
1 / 1 shared
Han, Jinfeng
1 / 1 shared
Lee, Taein
1 / 1 shared
Hopkins, Patrick E.
1 / 11 shared
Chiu, Arlene
1 / 1 shared
Russell, Thomas P.
1 / 15 shared
Mcguiggan, Patty
1 / 1 shared
Adams, Nicholas
1 / 1 shared
Jiang, Yufeng
1 / 2 shared
Ganley, Connor
1 / 2 shared
Katz, Howard
1 / 4 shared
Tovar, John D.
1 / 1 shared
Clancy, Paulette
1 / 3 shared
Song, Yunjia
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Tiernan, Emma
  • Han, Jinfeng
  • Lee, Taein
  • Hopkins, Patrick E.
  • Chiu, Arlene
  • Russell, Thomas P.
  • Mcguiggan, Patty
  • Adams, Nicholas
  • Jiang, Yufeng
  • Ganley, Connor
  • Katz, Howard
  • Tovar, John D.
  • Clancy, Paulette
  • Song, Yunjia
OrganizationsLocationPeople

article

Blended Conjugated Host and Unconjugated Dopant Polymers Towards N‐type All‐Polymer Conductors and High‐ZT Thermoelectrics

  • Tiernan, Emma
  • Han, Jinfeng
  • Lee, Taein
  • Hopkins, Patrick E.
  • Chiu, Arlene
  • Russell, Thomas P.
  • Mcguiggan, Patty
  • Adams, Nicholas
  • Jiang, Yufeng
  • Ganley, Connor
  • Katz, Howard
  • Tovar, John D.
  • Thon, Susanna M.
  • Clancy, Paulette
  • Song, Yunjia
Abstract

<jats:title>Abstract</jats:title><jats:p>N‐Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N‐type polymers with high crystallinity and order are generally used for high‐conductivity (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/anie202219313-math-0001.png" xlink:title="urn:x-wiley:14337851:media:anie202219313:anie202219313-math-0001" /> ) organic conductors. Few n‐type polymers with only short‐range lamellar stacking for high‐conductivity materials have been reported. Here, we describe an n‐type short‐range lamellar‐stacked all‐polymer thermoelectric system with highest <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/anie202219313-math-0002.png" xlink:title="urn:x-wiley:14337851:media:anie202219313:anie202219313-math-0002" />of 78 S<jats:sup>−1</jats:sup>, power factor (<jats:italic>PF</jats:italic>) of 163 μW m<jats:sup>−1</jats:sup> K<jats:sup>−2</jats:sup>, and maximum Figure of merit (<jats:italic>ZT</jats:italic>) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (<jats:italic>S</jats:italic>) absolute values relative to <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/anie202219313-math-0003.png" xlink:title="urn:x-wiley:14337851:media:anie202219313:anie202219313-math-0003" /> , and atypical decreased thermal conductivity (<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/anie202219313-math-0004.png" xlink:title="urn:x-wiley:14337851:media:anie202219313:anie202219313-math-0004" /> ) with increased doping ratio contribute to the promising performance.</jats:p>

Topics
  • polymer
  • thermal conductivity
  • crystallinity