Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hu, Weiguo

  • Google
  • 2
  • 4
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Polystyrene‐based Macromolecular Ammonium Halides for Tuning Color and Exchange Kinetics of Perovskite Nanocrystalscitations
  • 2022Polystyrene‐based Macromolecular Ammonium Halides for Tuning Color and Exchange Kinetics of Perovskite Nanocrystals8citations

Places of action

Chart of shared publication
Ribbe, Alexander
2 / 2 shared
Bolduc, Kimberly
2 / 3 shared
Cueto, Christopher
1 / 2 shared
Emrick, Todd
2 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ribbe, Alexander
  • Bolduc, Kimberly
  • Cueto, Christopher
  • Emrick, Todd
OrganizationsLocationPeople

article

Polystyrene‐based Macromolecular Ammonium Halides for Tuning Color and Exchange Kinetics of Perovskite Nanocrystals

  • Ribbe, Alexander
  • Hu, Weiguo
  • Bolduc, Kimberly
  • Emrick, Todd
Abstract

<jats:title>Abstract</jats:title><jats:p>Post‐synthesis anion exchange of all‐inorganic cesium lead halide perovskite nanocrystals (CsPbX<jats:sub>3</jats:sub> NCs, where X=Cl, Br, and/or I) provides a rapid and simple means of tuning their band gap and photoluminescence emission wavelengths. Here we report color‐shifting of CsPbX<jats:sub>3</jats:sub> nanocrystals induced by a macromolecular source of halide ions, specifically using polystyrene with ammonium halides as pendent groups. This strategy for introducing new halides to the perovskite nanocrystals gave access to perovskite‐polymer hybrid materials as solutions, thin films, or free‐flowing powders. Spectroscopic measurements of the halide‐exchanged nanocrystal products revealed high photoluminescence quantum yields across the visible spectrum, with exchange kinetics that were tunable based on the solution environment, suggesting an aggregation‐inhibited exchange process that affords access to multi‐colored solutions and films.</jats:p>

Topics
  • perovskite
  • photoluminescence
  • polymer
  • thin film