People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yamauchi, Yusuke
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Dealloying Strategies for Mesoporous AuCu Nanoparticles: Impact on Internal Metallic Structure and Electrocatalytic Performancecitations
- 2024Selection of Fe as a barrier for manufacturing low-cost MgB2 multifilament wires - Advanced microscopy study between Fe and B reactioncitations
- 2023Weak Bonds, Strong Effectscitations
- 2023Flexible Nanoarchitectonics for Biosensing and Physiological Monitoring Applicationscitations
- 2023Mesoporous multimetallic nanospheres with exposed highly entropic alloy sitescitations
- 2023High entropy alloying strategy for accomplishing quintuple-nanoparticles grafted carbon towards exceptional high-performance overall seawater splittingcitations
- 2022Multifunctional materials for photo-electrochemical water splittingcitations
- 2022Plasma-Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Filmscitations
- 2022Efficient lithium-ion storage using a heterostructured porous carbon framework and its in situ transmission electron microscopy studycitations
- 2021Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reactioncitations
- 2020Photodegradation Activity of Poly(ethylene oxide-b-<i>ε</i>-caprolactone)-Templated Mesoporous TiO<sub>2</sub> Coated with Au and Ptcitations
- 2020Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion applicationcitations
- 2020Potassium-Ion Storage in Cellulose-Derived Hard Carboncitations
- 2019Reduced Graphene Oxide (rGO) Prepared by Metal-Induced Reduction of Graphite Oxidecitations
- 2019Enhancement of thermoelectric properties of La-doped SrTiO <sub>3</sub> bulk by introducing nanoscale porositycitations
- 2018Graphene-oxide-loaded superparamagnetic iron oxide nanoparticles for ultrasensitive electrocatalytic detection of microRNAcitations
- 2017Self-assembly of polymeric micelles made of asymmetric polystyrene-b-polyacrylic acid-b-polyethylene oxide for the synthesis of mesoporous nickel ferritecitations
- 2017Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricitycitations
- 2016Cyano-Bridged Trimetallic Coordination Polymer Nanoparticles and Their Thermal Decomposition into Nanoporous Spinel Ferromagnetic Oxidescitations
Places of action
Organizations | Location | People |
---|
article
Plasma-Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films
Abstract
<p>The synthesis of highly crystalline mesoporous materials is key to realizing high-performance chemical and biological sensors and optoelectronics. However, minimizing surface oxidation and enhancing the domain size without affecting the porous nanoarchitecture are daunting challenges. Herein, we report a hybrid technique that combines bottom-up electrochemical growth with top-down plasma treatment to produce mesoporous semiconductors with large crystalline domain sizes and excellent surface passivation. By passivating unsaturated bonds without incorporating any chemical or physical layers, these films show better stability and enhancement in the optoelectronic properties of mesoporous copper telluride (CuTe) with different pore diameters. These results provide exciting opportunities for the development of long-term, stable, and high-performance mesoporous semiconductor materials for future technologies.</p>