People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jankowski, Piotr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulationscitations
- 2023Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Boron-Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Electrolytes for Zn Batteries:Deep Eutectic Solvents in Polymer Gelscitations
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2022Dual Role of Mo<sub>6</sub>S<sub>8</sub> in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2022Boron-Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2021Prospects for Improved Magnesocene-Based Magnesium Battery Electrolytescitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2020Multi‐electron reactions enabled by anion‐based redox chemistry for high‐energy multivalent rechargeable batteries
- 2018Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolate-Glyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytescitations
- 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivitycitations
Places of action
Organizations | Location | People |
---|
article
Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries
Abstract
<jats:title>Abstract</jats:title><jats:p>The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi‐electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single‐electron transfer, which are not ideal for multivalent‐ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope‐like voltage profiles with insertion/extraction redox of less than one electron. Taking VS<jats:sub>4</jats:sub> as a model material, reversible two‐electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g<jats:sup>−1</jats:sup> at a current density of 100 mA g<jats:sup>−1</jats:sup> in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg<jats:sup>−1</jats:sup> for RMBs and >500 Wh kg<jats:sup>−1</jats:sup> for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg<jats:sup>2+</jats:sup> ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS<jats:sub>4</jats:sub>.</jats:p>