People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fichtner, Maximilian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Synthesis, Structural Analysis, and Degradation Behavior of Potassium Tin Chloride as Chloride‐Ion Batteries Conversion Electrode Material
- 2023High Active Material Loading in Organic Electrodes Enabled by an in‐situ Electropolymerized π‐Conjugated Tetrakis (4‐Aminophenyl) Porphyrincitations
- 2023Synthesis and Structure Stabilization of Disordered Rock Salt Mn/V-Based Oxyfluorides as Cathode Materials for Li-Ion Batteries
- 2023Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
- 2023Addressing the Sluggish Kinetics of Sulfur Redox for High‐Energy Mg–S Batteriescitations
- 2023Addressing the Sluggish Kinetics of Sulfur Redox for High‐Energy Mg–S Batteriescitations
- 2023A π‐Conjugated Porphyrin Complex as Cathode Material Allows Fast and Stable Energy Storage in Calcium Batteriescitations
- 2023A π‐Conjugated Porphyrin Complex as Cathode Material Allows Fast and Stable Energy Storage in Calcium Batteries
- 2023Molecular Engineering of Metalloporphyrins for High‐Performance Energy Storage: Central Metal Matterscitations
- 2023Multi‐component PtFeCoNi core‐shell nanoparticles on MWCNTs as promising bifunctional catalyst for oxygen reduction and oxygen evolution reactionscitations
- 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2022Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolutioncitations
- 2022Dual Role of Mo<sub>6</sub>S<sub>8</sub> in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2021Polyoxometalate Modified Separator for Performance Enhancement of Magnesium–Sulfur Batteriescitations
- 2021A self‐conditioned metalloporphyrin as a highly stable cathode for fast rechargeable magnesium batteries
- 2021A Self‐Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteriescitations
- 2021Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotentialcitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Pseudo-ternary LiBH4-LiCl-P2S5 system as structurally disordered bulk electrolyte for all-solid-state lithium batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2020Pseudo-ternary LiBH 4 ·LiCl·P 2 S 5 system as structurally disordered bulk electrolyte for all-solid-state lithium batteriescitations
- 2020Multi‐electron reactions enabled by anion‐based redox chemistry for high‐energy multivalent rechargeable batteries
- 2019Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of $LiNbO_{3}$ Surface Modification on the Electrochemical Performancecitations
- 2019Degradation Mechanisms in Li2VO2F Li-Rich Disordered Rock-Salt Cathodescitations
- 2019Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodescitations
- 2011Structure and thermodynamic properties of the NaMgH3 perovskitecitations
Places of action
Organizations | Location | People |
---|
article
Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries
Abstract
<jats:title>Abstract</jats:title><jats:p>The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi‐electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single‐electron transfer, which are not ideal for multivalent‐ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope‐like voltage profiles with insertion/extraction redox of less than one electron. Taking VS<jats:sub>4</jats:sub> as a model material, reversible two‐electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g<jats:sup>−1</jats:sup> at a current density of 100 mA g<jats:sup>−1</jats:sup> in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg<jats:sup>−1</jats:sup> for RMBs and >500 Wh kg<jats:sup>−1</jats:sup> for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg<jats:sup>2+</jats:sup> ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS<jats:sub>4</jats:sub>.</jats:p>