Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parambath, Dr. Vinayan Bhaghavathi

  • Google
  • 1
  • 8
  • 131

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries131citations

Places of action

Chart of shared publication
Vegge, Tejs
1 / 36 shared
Fichtner, Maximilian
1 / 26 shared
Zhao-Karger, Zhirong
1 / 14 shared
García Lastra, Juan Maria
1 / 15 shared
Roy, Ananyo
1 / 7 shared
Maibach, Julia
1 / 9 shared
Njel, Christian
1 / 10 shared
Jankowski, Piotr
1 / 15 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Vegge, Tejs
  • Fichtner, Maximilian
  • Zhao-Karger, Zhirong
  • García Lastra, Juan Maria
  • Roy, Ananyo
  • Maibach, Julia
  • Njel, Christian
  • Jankowski, Piotr
OrganizationsLocationPeople

article

Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries

  • Vegge, Tejs
  • Parambath, Dr. Vinayan Bhaghavathi
  • Fichtner, Maximilian
  • Zhao-Karger, Zhirong
  • García Lastra, Juan Maria
  • Roy, Ananyo
  • Maibach, Julia
  • Njel, Christian
  • Jankowski, Piotr
Abstract

<jats:title>Abstract</jats:title><jats:p>The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi‐electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single‐electron transfer, which are not ideal for multivalent‐ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope‐like voltage profiles with insertion/extraction redox of less than one electron. Taking VS<jats:sub>4</jats:sub> as a model material, reversible two‐electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of &gt;300 mAh g<jats:sup>−1</jats:sup> at a current density of 100 mA g<jats:sup>−1</jats:sup> in both RMBs and RCBs, resulting in a high energy density of &gt;300 Wh kg<jats:sup>−1</jats:sup> for RMBs and &gt;500 Wh kg<jats:sup>−1</jats:sup> for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg<jats:sup>2+</jats:sup> ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS<jats:sub>4</jats:sub>.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • mobility
  • extraction
  • laser emission spectroscopy
  • current density