People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Uhlig, Jens
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Synthesis of well-ordered functionalized silicon microwires using displacement talbot lithography for photocatalysis
- 2022Iridium Catalyzed Dehydrogenation in a Continuous Flow Reactor as a Tool Towards Practical On-Board Hydrogen Generation From LOHCscitations
- 2022Photophysical Integrity of the Iron(III) Scorpionate Framework in Iron(III)-NHC Complexes with Long-Lived 2LMCT Excited Statescitations
- 2022Iridium‐Catalyzed Dehydrogenation in a Continuous Flow Reactor for Practical On‐Board Hydrogen Generation From Liquid Organic Hydrogen Carrierscitations
- 2021Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionalitycitations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering.citations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering.citations
- 2020Hot branching dynamics in a light‐harvesting iron carbene complex revealed by ultrafast x‐ray emission spectroscopycitations
- 2020Hot branching dynamics in a light‐harvesting iron carbene complex revealed by ultrafast x‐ray emission spectroscopycitations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scatteringcitations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scatteringcitations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scatteringcitations
- 2020More than protection : the function of TiO2 interlayers in hematite functionalized Si photoanodescitations
- 2020More than protection : The function of TiO2interlayers in hematite functionalized Si photoanodescitations
- 2020More than protection: the function of TiO2 interlayers in hematite functionalized Si photoanodescitations
- 2019Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy.citations
- 2019Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopycitations
- 2019Hot Branching Dynamics in a Light-Harvesting Iron Carbene Complex Revealed by Ultrafast X-ray Emission Spectroscopy.citations
- 2017Ultrafast Electron Dynamics in Solar Energy Conversioncitations
- 2005Thin-film technology for HTSC Josephson devicescitations
Places of action
Organizations | Location | People |
---|
article
Hot Branching Dynamics in a Light-Harvesting Iron Carbene Complex Revealed by Ultrafast X-ray Emission Spectroscopy.
Abstract
Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeII NHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3 MLCT state, from the initially excited 1 MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3 MC state, in competition with vibrational relaxation and cooling to the relaxed 3 MLCT state. The relaxed 3 MLCT state then decays much more slowly (7.6 ps) to the 3 MC state. The 3 MC state is rapidly (2.2 ps) deactivated to the ground state. The 5 MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3 MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.