Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xiao, Chunhong

  • Google
  • 1
  • 5
  • 71

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electron‐Beam‐Induced Amorphization71citations

Places of action

Chart of shared publication
Conrad, Sabrina
1 / 1 shared
Mkhoyan, Andre
1 / 5 shared
Kumar, Prashant
1 / 13 shared
Ren, Limin
1 / 1 shared
Henning, Sheryl
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Conrad, Sabrina
  • Mkhoyan, Andre
  • Kumar, Prashant
  • Ren, Limin
  • Henning, Sheryl
OrganizationsLocationPeople

article

Controlling Dissolution and Transformation of Zeolitic Imidazolate Frameworks by using Electron‐Beam‐Induced Amorphization

  • Conrad, Sabrina
  • Mkhoyan, Andre
  • Kumar, Prashant
  • Ren, Limin
  • Henning, Sheryl
  • Xiao, Chunhong
Abstract

<jats:title>Abstract</jats:title><jats:p>Amorphous zeolitic imidazolate frameworks (ZIFs) offer promising applications as novel functional materials. Herein, amorphization of ZIF‐L through scanning‐electron‐beam exposure is demonstrated, based on amorphization of individual ZIF‐L crystals. The amorphized ZIF product has drastically increased stability against dissolution in water. An electron dose that allows for complete preservation of amorphous particles after immersion in water is established, resulting in new shapes of amorphous ZIF‐L with spatial control at the sub‐micrometer length scale. Changed water stability as a consequence of scanning‐electron‐beam exposure is demonstrated for three additional metal–organic frameworks (ZIF‐8, Zn(BeIm)OAc, MIL‐101), highlighting the potential use of an electron beam for top‐down MOF patterning. Lastly, recrystallization of ZIF‐L in the presence of linker is studied and shows distinct differences for crystalline and amorphized material.</jats:p>

Topics
  • impedance spectroscopy
  • amorphous
  • recrystallization