People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mukherjee, Amitrajit
KU Leuven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Fluorescence Blinking Beyond Nanoconfinement: Spatially Synchronous Intermittency of Entire Perovskite Microcrystals
Abstract
<jats:title>Abstract</jats:title><jats:p>Abrupt fluorescence intermittency or blinking is long recognized to be characteristic of single nano‐emitters. Extended quantum‐confined nanostructures also undergo spatially heterogeneous blinking; however, there is no such precedent in dimensionally unconfined (bulk) materials. Herein, we report multi‐level blinking of entire individual organo–lead bromide perovskite microcrystals (volume=0.1–3 μm<jats:sup>3</jats:sup>) under ambient conditions. Extremely high spatiotemporal correlation (>0.9) in intracrystal emission intensity fluctuations signifies effective communication amongst photogenerated carriers at distal locations (up to ca. 4 μm) within each crystal. Fused polycrystalline grains also exhibit this intriguing phenomenon, which is rationalized by correlated and efficient migration of carriers to a few transient nonradiative traps, the nature and population of which determine blinking propensity. Observation of spatiotemporally correlated emission intermittency in bulk semiconductor crystals opens the possibility of designing novel devices involving long‐range (mesoscopic) electronic communication.</jats:p>