People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lübken, Tilo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020In Situ Imine-Based Linker Formation for the Synthesis of Zirconium MOFs: A Route to CO2 Capture Materials and Ethylene Oligomerization Catalystscitations
- 2017Mechanochemical Friedel-Crafts Alkylation-A Sustainable Pathway Towards Porous Organic Polymerscitations
- 2016Fluorescent Pteridine Derivatives as New Markers for the Characterization of Genuine Monofloral New Zealand Manuka (Leptospermum scoparium) Honeycitations
Places of action
Organizations | Location | People |
---|
article
Mechanochemical Friedel-Crafts Alkylation-A Sustainable Pathway Towards Porous Organic Polymers
Abstract
<p>This study elucidates an innovative mechanochemical approach applying Friedel-Crafts alkylation to synthesize porous covalent triazine frameworks (CTFs). Herein, we pursue a counterintuitive approach by utilizing a rather destructive method to synthesize well-defined materials with intrinsic porosity. Investigating a model system including carbazole as monomer and cyanuric chloride as triazine node, ball milling is shown to successfully yield porous polymers almost quantitatively. We verified the successful structure formation by an in-depth investigation applying XPS, solid-state NMR and FT-IR spectroscopy. An in situ study of pressure and temperature developments inside the milling chamber in combination with two-dimensional liquid-state NMR spectroscopy reveals insights into the polymerization mechanism. The versatility of this mechanochemical approach is showcased by application of other monomers with different size and geometry.</p>