Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Porsgaard, Trine

  • Google
  • 1
  • 10
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Construction of insulin 18-mer nanoassemblies driven by coordination to Iron(II) and Zinc(II) ions at distinct sites12citations

Places of action

Chart of shared publication
Munch, Henrik Kofoed
1 / 1 shared
Arleth, Lise
1 / 15 shared
Nygård, Jesper
1 / 7 shared
Christensen, Niels Johan
1 / 3 shared
Zhang, Jingdong
1 / 8 shared
Jensen, Knud
1 / 4 shared
Engelbrekt, Christian
1 / 8 shared
Thulstrup, Peter Waaben
1 / 5 shared
Østergaard, Mads
1 / 1 shared
Hoeg-Jensen, Thomas
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Munch, Henrik Kofoed
  • Arleth, Lise
  • Nygård, Jesper
  • Christensen, Niels Johan
  • Zhang, Jingdong
  • Jensen, Knud
  • Engelbrekt, Christian
  • Thulstrup, Peter Waaben
  • Østergaard, Mads
  • Hoeg-Jensen, Thomas
OrganizationsLocationPeople

article

Construction of insulin 18-mer nanoassemblies driven by coordination to Iron(II) and Zinc(II) ions at distinct sites

  • Munch, Henrik Kofoed
  • Arleth, Lise
  • Nygård, Jesper
  • Christensen, Niels Johan
  • Zhang, Jingdong
  • Jensen, Knud
  • Engelbrekt, Christian
  • Thulstrup, Peter Waaben
  • Porsgaard, Trine
  • Østergaard, Mads
  • Hoeg-Jensen, Thomas
Abstract

<p>Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2′-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn<sup>II</sup>-binding hexamers to SA into trimers of hexamers, [[HI-bipy]<sub>6</sub>]<sub>3</sub>, driven by octahedral coordination to a Fe<sup>II</sup> ion. The structures were studied in solution by small-angle X-ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for Fe<sup>II</sup> than Zn<sup>II</sup> ions, enabling control of the hexamer formation with Zn<sup>II</sup> and the formation of trimers of hexamers with Fe<sup>II</sup> ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine.</p>

Topics
  • surface
  • atomic force microscopy
  • zinc
  • iron
  • self-assembly
  • X-ray scattering