People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Langer, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Monomer centred selectivity guidelines for sulfurated ring-opening copolymerisations
- 2024Monomer centred selectivity guidelines in sulfurated ring-opening copolymerisations
- 2022Unique design approach to realize an O-band laser monolithically integrated on 300 mm Si substrate by nano-ridge engineeringcitations
- 2014Ionizable Amphiphilic Dendrimer‐Based Nanomaterials with Alkyl‐Chain‐Substituted Amines for Tunable siRNA Delivery to the Liver Endothelium In Vivocitations
- 2009Partial least squares regression as a powerful tool for investigating large combinatorial polymer librariescitations
- 2009<i>In vitro</i> and <i>in vivo</i> degradation of poly(1,3‐diamino‐2‐hydroxypropane‐<i>co</i>‐polyol sebacate) elastomerscitations
- 2008Microfluidic platform for controlled synthesis of polymeric nanoparticlescitations
- 2008TOF-SIMS analysis of a 576 micropatterned copolymer array to reveal surface moieties that control wettabilitycitations
- 2007Why inhaling salt water changes what we exhalecitations
Places of action
Organizations | Location | People |
---|
article
Ionizable Amphiphilic Dendrimer‐Based Nanomaterials with Alkyl‐Chain‐Substituted Amines for Tunable siRNA Delivery to the Liver Endothelium In Vivo
Abstract
<jats:title>Abstract</jats:title><jats:p>A library of dendrimers was synthesized and optimized for targeted small interfering RNA (siRNA) delivery to different cell subpopulations within the liver. Using a combinatorial approach, a library of these nanoparticle‐forming materials was produced wherein the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length, and evaluated for their ability to deliver siRNA to liver cell subpopulations. Interestingly, two lead delivery materials could be formulated in a manner to alter their tissue tropism within the liver—with formulations from the same material capable of preferentially delivering siRNA to 1) endothelial cells, 2) endothelial cells and hepatocytes, or 3) endothelial cells, hepatocytes, and tumor cells in vivo. The ability to broaden or narrow the cellular destination of siRNA within the liver may provide a useful tool to address a range of liver diseases.</jats:p>