People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruns, Nico
Technical University of Darmstadt
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Rendering Polyurethane Hydrophilic for Efficient Cellulose Reinforcement in Melt‐Spun Nanocomposite Fiberscitations
- 2023Synthesis of artificial cells via biocatalytic polymerisation-induced self-assembly
- 2023Artificial cell synthesis using biocatalytic polymerization-induced self-assemblycitations
- 2022Donor–acceptor stenhouse adduct-polydimethylsiloxane-conjugates for enhanced photoswitching in bulk polymerscitations
- 2021Nano‐3D‐printed photochromic micro‐objectscitations
- 2021Infiltration of proteins in cholesteric cellulose structurescitations
- 2020Tuning the properties of a UV-polymerized, cross-linked solid polymer electrolyte for lithium batteriescitations
- 2020Tuning the Properties of a UV-Polymerized, Cross-Linked Solid Polymer Electrolyte for Lithium Batteriescitations
- 2018Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damagecitations
- 2018DNA-coated functional oil dropletscitations
- 2017Visible light-responsive DASA-polymer conjugatescitations
- 2017Visible light-responsive DASA-polymer conjugatescitations
- 2017Controlling enzymatic polymerization from surfaces with switchable bioaffinitycitations
- 2017Structural behavior of cylindrical polystyrene-block-poly(ethylene-butylene)-block-polystyrene (SEBS) triblock copolymer containing MWCNTscitations
- 2016Protein cages and synthetic polymerscitations
- 2014Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced compositescitations
- 2014Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced compositescitations
- 2014A chaperonin as protein nanoreactor for atom-transfer radical polymerizationcitations
- 2014Polymeric particulates for subunit vaccine deliverycitations
- 2013Combining polymers with the functionality of proteinscitations
- 2013Combining Polymers with the Functionality of Proteins: New Concepts for Atom Transfer Radical Polymerization, Nanoreactors and Damage Self-reporting Materialscitations
- 2013Hemoglobin and red blood cells catalyze atom transfer radical polymerizationcitations
- 2012ATRPasescitations
- 2012Use of a novel initiator for synthesis of amino-end functionalized polystyrene (NH 2-PS) by atom transfer radical polymerizationcitations
- 2011Selective and responsive nanoreactorscitations
- 2011Horseradish peroxidase as a catalyst for atom transfer radical polymerizationcitations
- 2011Phase behavior of vesicle-forming block copolymers in aqueous solutionscitations
- 2011Self-reporting materialscitations
- 2006Optical biochemical sensor for determining hydroperoxides in nonpolar organic liquids as archetype for sensors consisting of amphiphilic conetworks as immobilisation matricescitations
Places of action
Organizations | Location | People |
---|
article
A chaperonin as protein nanoreactor for atom-transfer radical polymerization
Abstract
<p>The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom-transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of Nisopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein- catalyst conjugate only yielded polymers with PDIs above 1.84.</p>