Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zheng, Chihui

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Reaction of β‐Ketoester and 1,3‐Diol to Access Chemically Recyclable and Mechanically Robust Poly(vinyl alcohol) Thermosets through Incorporation of β‐(1,3‐dioxane)ester4citations

Places of action

Chart of shared publication
Ma, Youwei
1 / 1 shared
Stellacci, Francesco
1 / 11 shared
Slor, Gadi
1 / 1 shared
Özkan, Melis
1 / 1 shared
Gubelmann, Oliviero Julien
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ma, Youwei
  • Stellacci, Francesco
  • Slor, Gadi
  • Özkan, Melis
  • Gubelmann, Oliviero Julien
OrganizationsLocationPeople

article

Reaction of β‐Ketoester and 1,3‐Diol to Access Chemically Recyclable and Mechanically Robust Poly(vinyl alcohol) Thermosets through Incorporation of β‐(1,3‐dioxane)ester

  • Ma, Youwei
  • Stellacci, Francesco
  • Zheng, Chihui
  • Slor, Gadi
  • Özkan, Melis
  • Gubelmann, Oliviero Julien
Abstract

<jats:p>The development of mechanically robust, chemically stable, and yet recyclable polymers represents an essential undertaking in the context of advancing a circular economy for plastics. We introduce a novel cleavable β‐(1,3‐dioxane)ester (DXE) linkage, synthesized through the catalyst‐free reaction of β‐ketoester and 1,3‐diol, to cross‐link poly(vinyl alcohol) (PVA) for the formation of high‐performance thermosets with inherent chemical recyclability. PVA, modified with β‐ketoester through the transesterification reaction with excess tert‐butyl acetoacetate, cross‐links with the unmodified 1,3‐diols within PVA itself upon thermal treatment. Cross‐linking improves PVA’s mechanical properties, with Young’s modulus and toughness that reach up to 656 MPa and 84 MJ cm‐3, i.e. 3‐ and 12‐fold those of linear PVA. Thermal treatment of the cross‐linked PVA under acid conditions leads to deconstruction of the networks, allowing the almost PVA excellent recovery (&gt; 90%) . In the absence of thermal or acidic treatment, cross‐linked PVA maintains its dimensional stability. We show that the recovery of PVA is also possible when the treatment is performed in the presence of other plastics commonly found in recycling mixtures. Furthermore, PVA‐based composites comprising carbon fibers and activated charcoal cross‐linked by the DXE linkages are also shown to be recyclable with recovery of the PVA and the fillers.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • composite
  • thermoset
  • ester
  • alcohol