Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Godumala, Mallesham

  • Google
  • 2
  • 3
  • 70

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022A Broadband, Multiplexed‐Visible‐Light‐Transport in Composite Flexible‐Organic‐Crystal Waveguide57citations
  • 2022A Broadband, Multiplexed‐Visible‐Light‐Transport in Composite Flexible‐Organic‐Crystal Waveguide13citations

Places of action

Chart of shared publication
Ravi, Jada
2 / 3 shared
Kumar, Avulu Vinod
2 / 2 shared
Chandrasekar, Rajadurai
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ravi, Jada
  • Kumar, Avulu Vinod
  • Chandrasekar, Rajadurai
OrganizationsLocationPeople

article

A Broadband, Multiplexed‐Visible‐Light‐Transport in Composite Flexible‐Organic‐Crystal Waveguide

  • Ravi, Jada
  • Kumar, Avulu Vinod
  • Godumala, Mallesham
Abstract

<jats:title>Abstract</jats:title><jats:p>We report the construction of an organic crystal multiplexer using three chemically and optically different acicular, flexible organic crystals for a broadband, visible light signal transportation. The mechanical integration of a highly flexible crystal waveguide of (<jats:italic>Z</jats:italic>)‐2‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(7‐methoxybenzo[c][1,2,5]thiadiazol‐4‐yl)acrylonitrile (BTD2CF<jats:sub>3</jats:sub>) displaying bright yellow (λ<jats:sub>1</jats:sub>) fluorescence with blue‐emitting (λ<jats:sub>2</jats:sub>) BPP and cyan emitting (λ<jats:sub>3</jats:sub>) DBA crystals using AFM‐tip provides a composite organic crystal multiplexer. The constructed hybrid single crystal multiplexer effectively transduces three optical signals (λ<jats:sub>1</jats:sub>+λ<jats:sub>2</jats:sub>+λ<jats:sub>3</jats:sub>) covering the 420–750 nm region as a composite output signal. The presented proof‐of‐principle experiment demonstrates the real potential of organic flexible crystal waveguides for visible light communication technologies.</jats:p>

Topics
  • single crystal
  • experiment
  • atomic force microscopy
  • composite