Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santourian, Irina

  • Google
  • 2
  • 14
  • 38

Physikalisch-Technische Bundesanstalt

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021An Electrically Conducting Three‐Dimensional Iron–Catecholate Porous Framework33citations
  • 2021An electrically conducting three‐dimensional iron‐catecholate porous framework5citations

Places of action

Chart of shared publication
Gruber, Christoph
1 / 1 shared
Fehn, Dominik
1 / 2 shared
Meyer, Karsten
1 / 3 shared
Hosseini, Pouya
1 / 3 shared
Wittstock, Gunther
1 / 10 shared
Bein, Thomas
1 / 27 shared
Scheurle, Patricia I.
1 / 1 shared
Mähringer, Andre
1 / 2 shared
Schirmacher, Alfred
1 / 3 shared
Hennemann, Matthias
1 / 3 shared
Clark, Timothy
1 / 11 shared
Medina, Dana D.
1 / 2 shared
Döblinger, Markus
1 / 6 shared
Rotter, Julian M.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Gruber, Christoph
  • Fehn, Dominik
  • Meyer, Karsten
  • Hosseini, Pouya
  • Wittstock, Gunther
  • Bein, Thomas
  • Scheurle, Patricia I.
  • Mähringer, Andre
  • Schirmacher, Alfred
  • Hennemann, Matthias
  • Clark, Timothy
  • Medina, Dana D.
  • Döblinger, Markus
  • Rotter, Julian M.
OrganizationsLocationPeople

article

An electrically conducting three‐dimensional iron‐catecholate porous framework

  • Santourian, Irina
Abstract

Here, we report the synthesis of a unique cubic metal-organic framework (MOF), the Fe-HHTP-MOF, comprising hexahydroxytriphenylene (HHTP) supertetrahedral units and FeIII ions, arranged in a diamond topology. The MOF is synthesized under solvothermal conditions, yielding a highly crystalline, deep black powder, with crystallites of 300-500 nm size and tetrahedral morphology. Nitrogen sorption analysis indicates a highly porous material with a surface area exceeding 1400 m2 g−1. Furthermore, Fe-HHTP-MOF shows broadband absorption from 475 nm up to 1900 nm with excellent absorption capability of 98.5% of the incoming light over the visible spectral region. Electrical conductivity measurements of pressed pellets reveal a high intrinsic electrical conductivity of up to 10−3 S cm−1. Quantum mechanical calculations predict Fe-HHTP-MOF to be an efficient electron conductor, exhibiting continuous charge-carrier pathways throughout the structure. This report expands the paradigm of intrinsically electroactive MOFs, serving as a solid basis for the development of highly porous, ordered frameworks with enhanced electrical conductivity.

Topics
  • porous
  • impedance spectroscopy
  • surface
  • Nitrogen
  • iron
  • electrical conductivity