Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kato, Riki

  • Google
  • 2
  • 6
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Perovskite Nanosheet Hydrogels with Mechanochromic Structural Color20citations
  • 2021Structure-regulated tough elastomers of liquid crystalline inorganic nanosheet/polyurethane nanocomposites6citations

Places of action

Chart of shared publication
Sueyoshi, Keiichiro
1 / 1 shared
Yamamoto, Shinya
1 / 1 shared
Miyamoto, Nobuyoshi
2 / 3 shared
Inadomi, Takumi
1 / 1 shared
Yang, Wenqi
1 / 1 shared
Morooka, Toki
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Sueyoshi, Keiichiro
  • Yamamoto, Shinya
  • Miyamoto, Nobuyoshi
  • Inadomi, Takumi
  • Yang, Wenqi
  • Morooka, Toki
OrganizationsLocationPeople

article

Perovskite Nanosheet Hydrogels with Mechanochromic Structural Color

  • Sueyoshi, Keiichiro
  • Yamamoto, Shinya
  • Kato, Riki
  • Miyamoto, Nobuyoshi
  • Inadomi, Takumi
  • Yang, Wenqi
Abstract

<jats:title>Abstract</jats:title><jats:p>Structural color colloidal sols of perovskite nanosheets were synthesized and were immobilized in a polymer hydrogel film by in situ photopolymerization, leading to a novel mechanochromic material. Visible absorption spectroscopy, polarized optical microscopy and small‐angle X‐ray scattering revealed that the nanosheets are aligned parallel to the film surface with the periodic distance of up to ca. 300 nm, giving the structural color tunable over full color range. The present structural color gel showed reversible mechanochromic response that detects weak stress of 1 kPa with the quick response time less than 1 ms as well as high mechanical toughness (compressive breaking stress of up to 3 MPa). These excellent properties are suitable for applications for mechano‐sensors and displays.</jats:p>

Topics
  • perovskite
  • surface
  • polymer
  • laser emission spectroscopy
  • mass spectrometry
  • optical microscopy
  • aligned