People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sun, Haotian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Linear‐Dendritic Alternating Copolymers
Abstract
<jats:title>Abstract</jats:title><jats:p>Herein, the design, synthesis, and characterization of an unprecedented copolymer consisting of alternating linear and dendritic segments is described. First, a 4th‐generation Hawker‐type dendron with two azide groups was synthesized, followed by a step‐growth azide‐alkyne “click” reaction between the 4th‐generation diazido dendron and poly(ethylene glycol) diacetylene to create the target polymers. Unequal reactivity of the functional groups was observed in the step‐growth polymerization. The resulting copolymers, with alternating hydrophilic linear and hydrophobic dendritic segments, can spontaneously associate into a unique type of microphase‐segregated nanorods in water.</jats:p>