Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jouen, Samuel

  • Google
  • 6
  • 26
  • 148

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Influence of Sulfur and Water Vapor on High-Temperature Oxidation Resistance of an Alumina-Forming Austenitic Alloy10citations
  • 2021Influence of strain rate and Sn in solid solution on the grain refinement and crystalline defect density in severely deformed Cu10citations
  • 2016Transition‐Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium‐ and Sodium‐Ion Batteries with Excellent Cycling Properties11citations
  • 2016Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties100citations
  • 2014Oxidation behaviour of the 47Nb 16Si 25Ti 8Hf 2Al 2Cr alloy sheet and vibrational spectroscopy15citations
  • 2013Atomic scale characterization of the nucleation and growth of SnO2 particles in oxidized CuSn alloys2citations

Places of action

Chart of shared publication
Sauvage, Xavier
3 / 56 shared
Roussel, Manuel
1 / 4 shared
Allo, Justine
1 / 1 shared
Gibouin, David
1 / 1 shared
Lomakin, Ivan
1 / 4 shared
Enikeev, Nariman
1 / 10 shared
Zaher, Ghenwa
1 / 1 shared
Saiter-Fourcin, Allisson
1 / 7 shared
Sougrati, Moulay Tahar
2 / 57 shared
Ali, Darwiche
1 / 2 shared
Dronskowski, Richard
2 / 11 shared
Stievano, Lorenzo
2 / 56 shared
Hermann, Raphaël P.
1 / 4 shared
Abdelfattah, Mahmoud
1 / 2 shared
Monconduit, Laure
2 / 51 shared
Liu, Xiaohiu
2 / 2 shared
Darwiche, Ali
1 / 8 shared
Mahmoud, Abdelfattah
1 / 64 shared
Hermann, Raphaël
1 / 24 shared
Bacos, Marie-Pierre
1 / 5 shared
Lefez, B.
1 / 1 shared
Hannoyer, B.
1 / 2 shared
Beucher, E.
1 / 1 shared
Cuvilly, Fabien
1 / 9 shared
Dubey, Megha
1 / 2 shared
Hannoyer, Béatrice
1 / 3 shared
Chart of publication period
2021
2016
2014
2013

Co-Authors (by relevance)

  • Sauvage, Xavier
  • Roussel, Manuel
  • Allo, Justine
  • Gibouin, David
  • Lomakin, Ivan
  • Enikeev, Nariman
  • Zaher, Ghenwa
  • Saiter-Fourcin, Allisson
  • Sougrati, Moulay Tahar
  • Ali, Darwiche
  • Dronskowski, Richard
  • Stievano, Lorenzo
  • Hermann, Raphaël P.
  • Abdelfattah, Mahmoud
  • Monconduit, Laure
  • Liu, Xiaohiu
  • Darwiche, Ali
  • Mahmoud, Abdelfattah
  • Hermann, Raphaël
  • Bacos, Marie-Pierre
  • Lefez, B.
  • Hannoyer, B.
  • Beucher, E.
  • Cuvilly, Fabien
  • Dubey, Megha
  • Hannoyer, Béatrice
OrganizationsLocationPeople

article

Transition‐Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium‐ and Sodium‐Ion Batteries with Excellent Cycling Properties

  • Sougrati, Moulay Tahar
  • Ali, Darwiche
  • Dronskowski, Richard
  • Stievano, Lorenzo
  • Hermann, Raphaël P.
  • Abdelfattah, Mahmoud
  • Monconduit, Laure
  • Jouen, Samuel
  • Liu, Xiaohiu
Abstract

We report evidence for the electrochemical activity of transition‐metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali‐metal‐ion batteries, similar to its oxide analogue FeO. Based on 57Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe−NCN into Li/Na−NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well‐established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (such as nanoscale tailoring, sophisticated textures, or coating) to obtain long cycle life with current density as high as 9 A g−1 for hundreds of charge–discharge cycles. Similar to the iron compound, several other transition‐metal carbodiimides Mx(NCN)y with M=Mn, Cr, Zn can cycle successfully versus lithium and sodium. Their electrochemical activity and performance open the way to the design of a novel family of anode materials.

Topics
  • density
  • compound
  • Carbon
  • Sodium
  • texture
  • Lithium
  • iron
  • current density
  • infrared spectroscopy