Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scholtzova, Henrieta

  • Google
  • 1
  • 12
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Development of neuroimaging biomarkers in non‐human primate model of sporadic Alzheimer’s disease pathologycitations

Places of action

Chart of shared publication
Veraart, Jelle
1 / 1 shared
Hopkins, William D.
1 / 2 shared
Akers, Carolyn
1 / 1 shared
Szabo, Jakub
1 / 1 shared
Goldman, Hannah
1 / 1 shared
Genovese, Thomas S.
1 / 1 shared
Rusinek, Henry
1 / 1 shared
Llanos, Michael
1 / 1 shared
Murray, Sean
1 / 2 shared
Gray, Stanton B.
1 / 1 shared
Wisniewski, Thomas
1 / 1 shared
Zaimwadghiri, Youssef
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Veraart, Jelle
  • Hopkins, William D.
  • Akers, Carolyn
  • Szabo, Jakub
  • Goldman, Hannah
  • Genovese, Thomas S.
  • Rusinek, Henry
  • Llanos, Michael
  • Murray, Sean
  • Gray, Stanton B.
  • Wisniewski, Thomas
  • Zaimwadghiri, Youssef
OrganizationsLocationPeople

article

Development of neuroimaging biomarkers in non‐human primate model of sporadic Alzheimer’s disease pathology

  • Veraart, Jelle
  • Hopkins, William D.
  • Akers, Carolyn
  • Szabo, Jakub
  • Goldman, Hannah
  • Genovese, Thomas S.
  • Rusinek, Henry
  • Llanos, Michael
  • Murray, Sean
  • Gray, Stanton B.
  • Wisniewski, Thomas
  • Zaimwadghiri, Youssef
  • Scholtzova, Henrieta
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Squirrel monkeys (SQMs) are a non‐human primate (NHP) model of Alzheimer’s disease (AD) pathology with extensive cerebral amyloid angiopathy (CAA). Our work characterizes neuroimaging biomarkers associated with aging and neurodegeneration. Previously, we demonstrated the sensitivity of 1) <jats:italic>in vivo</jats:italic> regional quantitative R2* alterations to track age‐related changes in neuropathology and 2) <jats:italic>ex vivo</jats:italic> diffusion‐weighted (DWI) MRI metrics to visualize changes in brain microstructure. We recently extended our analyses to <jats:italic>in vivo</jats:italic> multi‐shell diffusion metrics for detection and classification of amyloid‐related imaging abnormalities (ARIA), which have been linked to parenchymal vasogenic edema and sulcal effusions. To further facilitate quantitative analysis of MR markers (diffusion and R2*) we have built a novel pipeline for atlas‐based region‐of‐interest (ROI) segmentation using a SQM brain atlas modified from Schilling et al. (2017). Here we evaluate age‐related changes in R2* values and region‐specific volume using this automated workflow.</jats:p></jats:sec><jats:sec><jats:title>Method</jats:title><jats:p>Young and geriatric female SQMs underwent 2D T<jats:sub>2</jats:sub>‐weighted (T<jats:sub>2</jats:sub>‐w) Turbo Spin Echo (TSE) RARE and FLAIR MRI scans, in addition to multi‐shell DWI acquisitions. DTI and DKI metrics were derived from DWI datasets, including mean diffusivity (MD), mean kurtosis (MK), and fractional anisotropy (FA). We utilized <jats:italic>in vivo</jats:italic> multi‐gradient echo (MGE) scans to generate R2* maps for ROI‐based quantitative assessments of SQM neuropathology.</jats:p></jats:sec><jats:sec><jats:title>Result</jats:title><jats:p>We identified multiple instances of asymmetric hyperintensities (ARIA‐E) in geriatric SQMs using 2D T<jats:sub>2</jats:sub>‐w TSE RARE, FLAIR, and DWI MRI sequences <jats:italic>in vivo</jats:italic>. While RARE and FLAIR scans demonstrated abnormalities in SQM brains, diffusion metrics MD and MK revealed greater propagation of the lesions through WM tracks. Histological analyses of the underlying neuropathology (e.g. myelin, neuroglia, and amyloid burden) are underway. Significant increases in R2* values with age were observed in all defined cortical regions, with subsequent histological confirmation of severe CAA, microhemorrhages, and iron deposits. Preliminary volumetric measurements revealed significant decreases with age in the prefrontal cortex. Additional morphometric analyses are ongoing.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>We safely monitored age‐dependent changes in neuroimaging parameters derived from diffusion‐weighted, T<jats:sub>2</jats:sub>‐w TSE RARE, and FLAIR acquisitions. Our study highlights the utility of the SQM model to uncover potential long‐term consequences of ARIA and validates diffusion MRI methodologies to target brain integrity.</jats:p></jats:sec>

Topics
  • microstructure
  • molecular dynamics
  • iron
  • aging
  • size-exclusion chromatography
  • diffusivity
  • aging
  • quantitative determination method