People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cortelletti, Paolo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulation
Abstract
Herein, the fabrication of multi‐responsive and hierarchically organized nanomaterial using core‐shell SrF2 upconverting nanoparticles, doped with Yb3+, Tm3+, Nd3+ incorporated into gelatin methacryloyl matrix, is reported. Upon 800 nm excitation, deep monitoring of 3D‐printed constructs is demonstrated. Addition of magnetic self‐assembly of iron oxide nanoparticles within the hydrogel provides anisotropic structuration from the nano‐ to the macro‐scale and magnetic responsiveness permitting remote manipulation. The present study provides a new strategy for the fabrication of a novel highly organized multi‐responsive material using additive manufacturing, which can have important implications in biomedicine.