Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Merdzhanova, Tsvetelina

  • Google
  • 1
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024High‐Bandgap Perovskites for Efficient Indoor Light Harvesting8citations

Places of action

Chart of shared publication
Liu, Zhifa
1 / 1 shared
Rau, Uwe
1 / 2 shared
Zahren, Christoph
1 / 1 shared
Kin, Lichung
1 / 1 shared
Shcherbachenko, Sergey
1 / 1 shared
Kirchartz, Thomas
1 / 20 shared
Astakhov, Oleksandr
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Liu, Zhifa
  • Rau, Uwe
  • Zahren, Christoph
  • Kin, Lichung
  • Shcherbachenko, Sergey
  • Kirchartz, Thomas
  • Astakhov, Oleksandr
OrganizationsLocationPeople

article

High‐Bandgap Perovskites for Efficient Indoor Light Harvesting

  • Liu, Zhifa
  • Rau, Uwe
  • Zahren, Christoph
  • Kin, Lichung
  • Merdzhanova, Tsvetelina
  • Shcherbachenko, Sergey
  • Kirchartz, Thomas
  • Astakhov, Oleksandr
Abstract

<jats:p>The use of metal‐halide perovskites in photovoltaic applications has become increasingly attractive due to their low‐temperature manufacturing processes and long charge‐carrier lifetimes. High‐bandgap perovskite solar cells have potential for indoor applications due to their efficient absorption of the spectrum of light‐emitting diodes (LEDs). This study investigates the performance of high‐bandgap perovskite solar cells under a wide range of lighting conditions, including a commercially available white LED lamp with a 5–40 000 lx illuminance range and a standard 1 sun reference. The performance of CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbI<jats:sub>3</jats:sub>‐based perovskite solar cells to CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>Pb(I<jats:sub>0.8</jats:sub>,Br<jats:sub>0.2</jats:sub>)<jats:sub>3</jats:sub> solar cells with varying electron transport layers (ETL), including PCBM, PCBM:CMC, and CMC:ICBA fullerene combinations, is compared. Because the spectral response of perovskite solar cells covers the white LED spectrum very well, the major performance difference is related to the open‐circuit voltage and fill factor. The cells with the CH3NH3Pb(I<jats:sub>0.8</jats:sub>,Br<jats:sub>0.2</jats:sub>)<jats:sub>3</jats:sub> absorber layer and the CMC:ICBA ETL demonstrate superior open‐circuit voltage and therefore a high efficiency above 29% at 200–500 lx, typical for indoor lighting.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy