People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Hongli
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 20242D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recoverycitations
- 20233D Architectural MXene‐based Composite Films for Stealth Terahertz Electromagnetic Interference Shielding Performancecitations
- 2023Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiencycitations
- 2023Dispersion of InSb nanoinclusions in Cu3SbS4 for improved stability and thermoelectric efficiencycitations
- 20233D architectural MXene composite films for stealth terahertz shielding performancecitations
Places of action
Organizations | Location | People |
---|
article
Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiency
Abstract
<jats:p>Thermoelectric‐based waste heat recovery requires efficient materials to replace conventional non‐eco‐friendly Te‐ and Pb‐based commercial devices. Ternary copper chalcogenide‐based famatinite (Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub>) compound is one of the practical substitutes for traditional thermoelectric materials. However, the pristine Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub> inherits poor structural complexion, large thermal conductivity, and low power conversion efficiency. To develop high‐efficiency Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub>, InSb nanoinclusions are incorporated via high‐energy ball milling followed by the hot‐press densification method. Incorporating InSb nanoinclusions to lower thermal conductivity via phonon scattering while increasing the thermopower via a carrier energy filtering process. The thermoelectric performance (ZT) of ≈0.4 at 623 K is obtained in Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub>‐3 mol% InSb nanocomposite, which is ≈140% higher than pure Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub>. Both mechanical and thermal stability are improved by grain boundary hardening and dispersion strengthening. Thus, a facile nanostructured Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub> with added InSb nanoinclusions is delivered as a highly efficient, eco‐friendly, structurally‐, thermally‐, and mechanically‐stable material for next‐generation thermoelectric generators.</jats:p>