Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Assi, Dani S.

  • Google
  • 11
  • 18
  • 99

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 20242D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recovery5citations
  • 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb device6citations
  • 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb device6citations
  • 20233D Architectural MXene‐based Composite Films for Stealth Terahertz Electromagnetic Interference Shielding Performance10citations
  • 2023Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiency6citations
  • 2023Dispersion of InSb nanoinclusions in Cu3SbS4 for improved stability and thermoelectric efficiency6citations
  • 20233D architectural MXene composite films for stealth terahertz shielding performance10citations
  • 2022Insights into the classification of nanoinclusions of composites for thermoelectric applications13citations
  • 2022Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu3SbS4 Composites12citations
  • 2022Insights into the Classification of Nanoinclusions of Composites for Thermoelectric Applications13citations
  • 2022Probing the effect of MWCNT nanoinclusions on the thermoelectric performance of Cu3SbS4 composites12citations

Places of action

Chart of shared publication
Karthikeyan, Vaithinathan
11 / 17 shared
Kannan, Venkatramanan
1 / 2 shared
Vellaisamy, Arul Lenus Roy
6 / 18 shared
Huang, Hongli
5 / 5 shared
Shek, Chanhung
2 / 2 shared
Chen, Yue
1 / 3 shared
Kannan, Venkataramanan
2 / 2 shared
Kandira, Kadir Ufuk
2 / 2 shared
Nayak, Sanjib
2 / 7 shared
Theja, Vaskuri C. S.
6 / 7 shared
Roy, Vellaisamy A. L.
5 / 10 shared
Alsulami, Raghad Saud
2 / 2 shared
Chen, Bao-Jie
1 / 1 shared
Shek, Chan-Hung
3 / 3 shared
Chen, Bao Jie
1 / 1 shared
Chan, Chi-Hou
1 / 1 shared
Saianand, Gopalan
1 / 7 shared
Gopalan, Saianand
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Karthikeyan, Vaithinathan
  • Kannan, Venkatramanan
  • Vellaisamy, Arul Lenus Roy
  • Huang, Hongli
  • Shek, Chanhung
  • Chen, Yue
  • Kannan, Venkataramanan
  • Kandira, Kadir Ufuk
  • Nayak, Sanjib
  • Theja, Vaskuri C. S.
  • Roy, Vellaisamy A. L.
  • Alsulami, Raghad Saud
  • Chen, Bao-Jie
  • Shek, Chan-Hung
  • Chen, Bao Jie
  • Chan, Chi-Hou
  • Saianand, Gopalan
  • Gopalan, Saianand
OrganizationsLocationPeople

article

Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiency

  • Karthikeyan, Vaithinathan
  • Theja, Vaskuri C. S.
  • Assi, Dani S.
  • Vellaisamy, Arul Lenus Roy
  • Huang, Hongli
  • Shek, Chan-Hung
Abstract

<jats:p>Thermoelectric‐based waste heat recovery requires efficient materials to replace conventional non‐eco‐friendly Te‐ and Pb‐based commercial devices. Ternary copper chalcogenide‐based famatinite (Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub>) compound is one of the practical substitutes for traditional thermoelectric materials. However, the pristine Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub> inherits poor structural complexion, large thermal conductivity, and low power conversion efficiency. To develop high‐efficiency Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub>, InSb nanoinclusions are incorporated via high‐energy ball milling followed by the hot‐press densification method. Incorporating InSb nanoinclusions to lower thermal conductivity via phonon scattering while increasing the thermopower via a carrier energy filtering process. The thermoelectric performance (ZT) of ≈0.4 at 623 K is obtained in Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub>‐3 mol% InSb nanocomposite, which is ≈140% higher than pure Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub>. Both mechanical and thermal stability are improved by grain boundary hardening and dispersion strengthening. Thus, a facile nanostructured Cu<jats:sub>3</jats:sub>SbS<jats:sub>4</jats:sub> with added InSb nanoinclusions is delivered as a highly efficient, eco‐friendly, structurally‐, thermally‐, and mechanically‐stable material for next‐generation thermoelectric generators.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • compound
  • grain
  • grain boundary
  • milling
  • copper
  • ball milling
  • ball milling
  • thermal conductivity
  • densification
  • power conversion efficiency