People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Yan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Recyclable 3D‐Printed Aqueous Lithium‐Ion Batterycitations
- 2023Controlling Charge Transport in 2D Conductive MOFs─The Role of Nitrogen-Rich Ligands and Chemical Functionality.citations
- 2022Interface Stability between Na3Zr2Si2PO12 Solid Electrolyte and Sodium Metal Anode for Quasi-Solid-State Sodium Batterycitations
- 2022Ultrasonic Transducers made from Freeze-Cast Porous Piezoceramicscitations
- 2021Piezoelectric tunability and topological insulator transition in a GaN/InN/GaN quantum-well devicecitations
- 2021Patch test–relevant concentrations of metal salts cause localized cytotoxicity, including apoptosis, in skin ex vivocitations
- 2021Correlation between dielectric, mechanical properties and electromechanical performance of functionalized graphene / polyurethane nanocompositescitations
- 2020Self-healing dielectric elastomers for damage-Tolerant actuation and energy harvestingcitations
- 2020Harnessing Plasticity in an Amine-Borane as a Piezoelectric and Pyroelectric Flexible Filmcitations
- 2019Piezoelectric performance of PZT-based materials with aligned porosity::experiment and modellingcitations
- 2019Ice-templated poly(vinylidene fluoride) ferroelectretscitations
- 2019Piezoelectric performance of PZT-based materials with aligned porosity:citations
- 20181-3-Type Composites Based on Ferroelectrics:Electromechanical Coupling, Figures of Merit, and Piezotechnical Energy-Harvesting Applicationscitations
- 2018Understanding the effect of porosity on the polarisation-field response of ferroelectric materialscitations
- 20181-3-Type Composites Based on Ferroelectricscitations
- 2018Ice-templated poly(vinylidene fluoride) ferroelectretscitations
- 2016Tannic Acid and Cholesterol-Dopamine as Building Blocks in Composite Coatings for Substrate-Mediated Drug Deliverycitations
- 2016Tannic Acid and Cholesterol-Dopamine as Building Blocks in Composite Coatings for Substrate-Mediated Drug Deliverycitations
Places of action
Organizations | Location | People |
---|
article
Recyclable 3D‐Printed Aqueous Lithium‐Ion Battery
Abstract
<jats:p>Additive manufacturing, or 3D printing, in energy storage devices such as batteries has the potential to create new form factor small cells that are incorporated into the shape of the device at the design stage. With large‐scale proliferation, sustainable and recyclable materials are needed to avoid used cell waste accumulation, and the cells should have performance metrics that match or exceed existing cells. Inspired by safe aqueous battery chemistries and development in stereolithographic photopolymerization printing methods such as vat polymerization (Vat‐P), a 3D‐printed aqueous lithium‐ion battery developed, using sustainable active cathode and anode materials of LiMn<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> and FePO<jats:sub>4</jats:sub>·2H<jats:sub>2</jats:sub>O, which can be fully recycled using a simple combustion method. This battery is designed to allow a stable cycling, higher energy density option compared to a metallic cell of similar construction, and to ensure better intraelectrode electrical conductivity and rigidity necessary for a viable cell, avoiding brittleness sometimes found in all‐in‐one composite‐printed electrodes. The printed cell has a stable cell‐level capacity of 1.86 mAh, better than that of a comparable metallic coin cell of similar internal chemistry, with an average cell voltage just over 1.0 V. Following combustion, the crystalline phase of LiMn<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> and a mixed phase of some Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> mixed with a dominant composition of FePO<jats:sub>4</jats:sub> are recovered. All inorganic materials are recovered after combustion.</jats:p>