Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Batzer, Mattis

  • Google
  • 2
  • 4
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Flexible Freestanding Thin Polyethylene Oxide‐Based Film as Artificial Solid–Electrolyte Interface to Protect Lithium Metal in Lithium–Sulfur Batteries6citations
  • 2022Flexible Freestanding Thin Polyethylene Oxide‐Based Film as Artificial Solid–Electrolyte Interface to Protect Lithium Metal in Lithium–Sulfur Batteries6citations

Places of action

Chart of shared publication
Garnweitner, Georg
2 / 13 shared
Grotkopp, Nico Lars
2 / 2 shared
Jean-Fulcrand, Annelise
2 / 4 shared
Horst, Marcella
2 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Garnweitner, Georg
  • Grotkopp, Nico Lars
  • Jean-Fulcrand, Annelise
  • Horst, Marcella
OrganizationsLocationPeople

article

Flexible Freestanding Thin Polyethylene Oxide‐Based Film as Artificial Solid–Electrolyte Interface to Protect Lithium Metal in Lithium–Sulfur Batteries

  • Garnweitner, Georg
  • Batzer, Mattis
  • Grotkopp, Nico Lars
  • Jean-Fulcrand, Annelise
  • Horst, Marcella
Abstract

<jats:sec><jats:label /><jats:p>Lithium–sulfur batteries (LSBs) that utilize sulfur and lithium (Li) metal as electrode materials are highly attractive for transportation applications due to their high theoretical gravimetric energy density. However, two major challenges currently impede the commercialization of LSB, which are the formation of Li dendrites and polysulfide shuttling. To mitigate these two effects, a protective film or artificial solid–electrolyte interface (SEI) can be applied directly to the Li‐metal surface. Herein, the preparation of freestanding polyethylene oxide (PEO)‐based films using tape casting as a scalable coating technique is presented. Moreover, the films are applied directly to the Li surface via a solvent‐free method. To demonstrate the suitability of the developed PEO‐based films, the long‐term cycling performance of the lithium–sulfur cells is discussed. It is shown that the cells with the Li‐metal surface protected by PEO‐based films achieve better stability and reproducibility, reaching ≈400 mA h g <jats:sub>S</jats:sub><jats:sup>−1</jats:sup> after 250 cycles compared to ≈200 mA h g <jats:sub>S</jats:sub><jats:sup>−1</jats:sup> after 250 cycles for the bare Li‐metal electrode. An extensive postmortem analysis of the Li‐metal electrode surface with scanning electron microscopy is additionally shown, revealing that the PEO‐based artificial SEIs form uniformly with a low level of defect layers at the interface with the Li‐metal electrode, which indicates the creation of a stable SEI.</jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • surface
  • energy density
  • scanning electron microscopy
  • defect
  • casting
  • Lithium
  • size-exclusion chromatography