Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chemseddine, Abdelkrim

  • Google
  • 2
  • 7
  • 336

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Planar and Nanostructured n-Si/Metal-Oxide/WO3/BiVO4 Monolithic Tandem Devices for Unassisted Solar Water Splitting17citations
  • 2016Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting319citations

Places of action

Chart of shared publication
Berglund, Sean
1 / 1 shared
Bogdanoff, Peter
2 / 8 shared
Ahmet, Ibbi Y.
1 / 4 shared
Präg, Raphael F.
1 / 1 shared
Krol, Roel Van De
2 / 12 shared
Berglund, Sean P.
1 / 1 shared
Friedrich, Dennis
1 / 11 shared
Chart of publication period
2020
2016

Co-Authors (by relevance)

  • Berglund, Sean
  • Bogdanoff, Peter
  • Ahmet, Ibbi Y.
  • Präg, Raphael F.
  • Krol, Roel Van De
  • Berglund, Sean P.
  • Friedrich, Dennis
OrganizationsLocationPeople

article

Planar and Nanostructured n-Si/Metal-Oxide/WO3/BiVO4 Monolithic Tandem Devices for Unassisted Solar Water Splitting

  • Chemseddine, Abdelkrim
  • Berglund, Sean
  • Bogdanoff, Peter
  • Ahmet, Ibbi Y.
  • Präg, Raphael F.
  • Krol, Roel Van De
Abstract

A series of planar and nanostructured core-shell photoanodes composed of n-Si/SiO<sub>x</sub>/TiO<sub>2</sub>/WO<sub>3</sub>/BiVO<sub>4</sub> heterojunctions are fabricated by chemical deposition methods. Aerosol-assisted chemical vapor deposition (AA-CVD) is utilized for the large area production of planar SnO<sub>2</sub> and TiO<sub>2</sub> thin films and compact WO<sub>3</sub> nanorods, with the subsequent formation of WO<sub>3</sub>/BiVO<sub>4</sub> core-shell nanostructures via solution deposition. Optimized monolithic dual photoanodes consisting of n-Si/SiO<sub>x</sub>/TiO<sub>2</sub>/WO<sub>3</sub>/BiVO<sub>4</sub>/Fe(Ni)OOH and a Pt cathode as the hydrogen evolution catalyst, provide a combined photo-voltage capable of unassisted solar water splitting with a maximum photocurrent density of 0.3 mA cm<sup>−2</sup> in 1.0 m KB<sub>i</sub> pH 9.3 buffer solution under solar simulated AM 1.5 G illumination. An average faradaic efficiency of ≈98% is confirmed by operando differential electrochemical mass spectroscopy (DEMS) for H<sub>2</sub> production. Solid-state J–V measurements of the individual n-Si/SiO<sub>x</sub> /MO (MO = WO<sub>3</sub>, BiVO<sub>4</sub>, TiO<sub>2</sub>, or SnO<sub>2</sub>) interfaces in the dark and under illumination provide valuable insights into the unfavorable electrical properties at n-Si/SiO<sub>x</sub>/WO<sub>3</sub> or n-Si/SiO<sub>x</sub>/BiVO<sub>4</sub> junctions. The insertion of metal oxide buffer layers, such as SnO<sub>2</sub> and TiO<sub>2</sub>, can mitigate surface recombination at the junctions between n-Si/SiO<sub>x</sub> and WO<sub>3</sub> or BiVO<sub>4</sub> and strongly enhances the overall photovoltage. © 2020 The Authors. Published by Wiley-VCH GmbH.

Topics
  • density
  • impedance spectroscopy
  • surface
  • thin film
  • Hydrogen
  • additive manufacturing
  • chemical vapor deposition
  • discrete element method