Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Taeyoul

  • Google
  • 1
  • 11
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Advancing Charge Density in Temperature‐Dependent Amphiphile Metal–Organic Polyhedra‐Based Triboelectric Nanogenerators6citations

Places of action

Chart of shared publication
Hong, Seungbum
1 / 1 shared
Lee, Jaebeom
1 / 5 shared
Ko, Yoonah
1 / 1 shared
Kolleboyina, Jayaramulu
1 / 1 shared
Sharma, Arti
1 / 1 shared
Kumar, Gobbilla Sai
1 / 1 shared
Yoon, Soongil
1 / 1 shared
Jella, Venkatraju
1 / 1 shared
Ippili, Swathi
1 / 2 shared
Siddhanta, Soumik
1 / 2 shared
Saini, Haneesh
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Hong, Seungbum
  • Lee, Jaebeom
  • Ko, Yoonah
  • Kolleboyina, Jayaramulu
  • Sharma, Arti
  • Kumar, Gobbilla Sai
  • Yoon, Soongil
  • Jella, Venkatraju
  • Ippili, Swathi
  • Siddhanta, Soumik
  • Saini, Haneesh
OrganizationsLocationPeople

article

Advancing Charge Density in Temperature‐Dependent Amphiphile Metal–Organic Polyhedra‐Based Triboelectric Nanogenerators

  • Hong, Seungbum
  • Lee, Jaebeom
  • Ko, Yoonah
  • Kolleboyina, Jayaramulu
  • Sharma, Arti
  • Kumar, Gobbilla Sai
  • Yoon, Soongil
  • Yang, Taeyoul
  • Jella, Venkatraju
  • Ippili, Swathi
  • Siddhanta, Soumik
  • Saini, Haneesh
Abstract

<jats:title>Abstract</jats:title><jats:p>In this study, a mechanically flexible structure, a cuboctahedral metal‐organic polyhedra (MOP) Cu<jats:sub>24</jats:sub>[5‐(octyloxy) isophthalic acid]<jats:sub>24</jats:sub> Cu (II) paddlewheel clusters coordinated with (5‐(octyloxy) isophthalate), resulting in significantly enhanced hydrolytic stability are prepared. It should be noted that CuMOP‐1 exhibits evenly and symmetrically distributed non‐polar long alkyl chains and polar hydroxy groups, facilitating self‐assembly into higher‐order structures reminiscent of amphiphiles. Furthermore, the resultant CuMOP‐1 undergoes a phase change at 150–160 °C as confirmed temperature‐dependent Raman spectroscopy (RS), thermogravimetric analysis and Differential Scanning Calorimetry (TGA‐DSC). The possible use of Cu‐MOP‐1 for capturing mechanical energy is demonstrated by creating a flexible hybrid piezoelectric‐triboelectric nanogenerator (HP‐TENG). The resultant CuMOP‐1@ Polyvinylidene fluoride(PVDF) membrane‐based HP‐TENG demonstrates enhanced triboelectric output voltage of 547.5 V, current density of 15.16 µAcm<jats:sup>−2</jats:sup>, and power density of 2.8 mWcm<jats:sup>−2</jats:sup> due to its increased surface charge density and a substantial rise in the dielectric constant. Furthermore, the amphiphiles and phase change in CuMOP‐1 lead to ∽73% increase in voltage and 60% in current density of HP‐TENG in high‐temperature (140 °C) environments. HP‐TENG also exhibits exceptional temperature‐ and pressure‐sensing abilities, with sensitivities of 1.81 V°C<jats:sup>−1</jats:sup> and 7.12 V°kPa<jats:sup>−1</jats:sup>, respectively, showcasing its feasibility over a wide range of temperatures and pressures.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • cluster
  • phase
  • dielectric constant
  • thermogravimetry
  • differential scanning calorimetry
  • current density
  • Raman spectroscopy