Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hatzell, Kelsey

  • Google
  • 1
  • 11
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Operando Investigation on the Role of Densification and Chemo‐Mechanics on Solid‐State Cathodes9citations

Places of action

Chart of shared publication
Suk, Won Joon
1 / 1 shared
Zheng, Yanjie
1 / 1 shared
Jeong, Mingi
1 / 2 shared
Chuang, Andrew C.
1 / 1 shared
Mukherjee, Partha P.
1 / 6 shared
Puthusseri, Dhanya
1 / 2 shared
Sakamoto, Jeff
1 / 9 shared
Lin, Lin
1 / 3 shared
Okasinski, John S.
1 / 1 shared
Naik, Kaustubh G.
1 / 4 shared
Vishnugopi, Bairav S.
1 / 6 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Suk, Won Joon
  • Zheng, Yanjie
  • Jeong, Mingi
  • Chuang, Andrew C.
  • Mukherjee, Partha P.
  • Puthusseri, Dhanya
  • Sakamoto, Jeff
  • Lin, Lin
  • Okasinski, John S.
  • Naik, Kaustubh G.
  • Vishnugopi, Bairav S.
OrganizationsLocationPeople

article

Operando Investigation on the Role of Densification and Chemo‐Mechanics on Solid‐State Cathodes

  • Suk, Won Joon
  • Zheng, Yanjie
  • Jeong, Mingi
  • Chuang, Andrew C.
  • Mukherjee, Partha P.
  • Puthusseri, Dhanya
  • Sakamoto, Jeff
  • Lin, Lin
  • Okasinski, John S.
  • Hatzell, Kelsey
  • Naik, Kaustubh G.
  • Vishnugopi, Bairav S.
Abstract

<jats:title>Abstract</jats:title><jats:p>All solid‐state batteries are desirable for a range of energy storage applications which require high energy density. Achieving a high energy density in a solid‐state battery requires the operation of an energy dense anode with a composite solid‐state cathode. Pores and/or voids within a solid state cathode are ion‐blocking and thus control over the concentration and distribution of pores in the initial electrode and cycled electrode is desirable. This study provides an understanding of the interplay between electrode microstructure and mechanics on active material utilization in solid state cathodes composed of NCM 811 and Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl. Decreasing the solid electrolyte particle size leads to greater active material‐electrolyte contact and less total deformation when exposed to an external load. Composite cathodes with greater compliance can potentially decrease strain between the active material and solid electrolyte, decrease delamination events and result in higher overall active material utilization and high capacity retention.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • pore
  • energy density
  • laser emission spectroscopy
  • composite
  • void
  • densification