People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Aert, Sandra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Investigation of the octahedral network structure in formamidinium lead bromide nanocrystals by low-dose scanning transmission electron microscopycitations
- 2024Single-Layered Imine-Linked Porphyrin-Based Two-Dimensional Covalent Organic Frameworks Targeting CO<sub>2</sub> Reductioncitations
- 2024Stabilizing Perovskite Pb(Mg<sub>0.33</sub>Nb<sub>0.67</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> Thin Films by Fast Deposition and Tensile Mismatched Growth Templatecitations
- 2023Low-Dose 4D-STEM Tomography for Beam-Sensitive Nanocompositescitations
- 2023Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditionscitations
- 2023Exploring the effects of graphene and temperature in reducing electron beam damagecitations
- 2022Element specific atom counting at the atomic scale by combining high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray spectroscopycitations
- 2022Atomic-scale detection of individual lead clusters confined in Linde Type A zeolitescitations
- 2021Interface Pattern Engineering in Core-Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties
- 2020Alloy CsCd x Pb 1- x Br 3 Perovskite Nanocrystals:The Role of Surface Passivation in Preserving Composition and Blue Emissioncitations
- 2020Alloy CsCd x Pb1-x Br3 Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emissioncitations
- 2017One step toward a new generation of C-MOS compatible oxide PN junctionscitations
- 2016Long-range domain structure and symmetry engineering by interfacial oxygen octahedral coupling at heterostructure interfacecitations
- 2016Engineering properties by long range symmetry propagation initiated at perovskite heterostructure interface
- 2015Determination of the atomic width of an APB in ordered CoPt using quantified HAADF-STEMcitations
- 2014Lattice deformations in quasi-dynamic strain glass visualised and quantified by aberration corrected electron microscopycitations
- 2012Exit wave reconstruction from focal series of HRTEM images, single crystal XRD and total energy studies on Sb xWO 3+y (x ~ 0.11)citations
- 2009Effect of amorphous layers on the interpretation of restored exit wavescitations
Places of action
Organizations | Location | People |
---|
article
Single-Layered Imine-Linked Porphyrin-Based Two-Dimensional Covalent Organic Frameworks Targeting CO<sub>2</sub> Reduction
Abstract
The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.