Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wiemersmeyer, Simon

  • Google
  • 1
  • 8
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Assessing Key Issues Contributing to the Degradation of NCM‐622 || Cu Cells: Competition Between Transition Metal Dissolution and “Dead Li” Formation10citations

Places of action

Chart of shared publication
Demelash, Feleke
1 / 4 shared
Brake, Tobias
1 / 2 shared
Winter, Martin
1 / 25 shared
Adhitama, Egy
1 / 5 shared
Arifiadi, Anindityo Nugra
1 / 1 shared
Vahnstiege, Marc
1 / 2 shared
Placke, Tobias
1 / 9 shared
Javed, Atif
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Demelash, Feleke
  • Brake, Tobias
  • Winter, Martin
  • Adhitama, Egy
  • Arifiadi, Anindityo Nugra
  • Vahnstiege, Marc
  • Placke, Tobias
  • Javed, Atif
OrganizationsLocationPeople

article

Assessing Key Issues Contributing to the Degradation of NCM‐622 || Cu Cells: Competition Between Transition Metal Dissolution and “Dead Li” Formation

  • Wiemersmeyer, Simon
  • Demelash, Feleke
  • Brake, Tobias
  • Winter, Martin
  • Adhitama, Egy
  • Arifiadi, Anindityo Nugra
  • Vahnstiege, Marc
  • Placke, Tobias
  • Javed, Atif
Abstract

<jats:title>Abstract</jats:title><jats:p>Combining LiNi<jats:italic><jats:sub>x</jats:sub></jats:italic>Co<jats:italic><jats:sub>y</jats:sub></jats:italic>Mn<jats:italic><jats:sub>1−x−y</jats:sub></jats:italic>O<jats:sub>2</jats:sub> (NCM) as cathode with bare Cu as anode will potentially lead to next‐generation batteries that are smaller, lighter, and can run for longer periods on a single charge. However, maintaining high performance and a long lifespan of NCM || Cu cells is challenging as it can be affected by various factors from both the cathode and the anode. From the cathode, it is well‐known that transition metal (TM) dissolution accelerates cell degradation. From the anode, one of the main challenges is the formation of high surface area Li deposits which later transform into “inactive Li” or “dead Li”. In this study, a comprehensive assessment regarding these competing factors (i.e., TM deposits and “dead Li”) is discussed. Accelerated TM dissolution is accomplished by introducing TM‐containing additives into the electrolyte. The effects of these competing factors and their degradation mechanism are studied quantitatively and qualitatively through inductively coupled plasma, i.e., optical emission spectroscopy and mass spectrometry. The “dead Li” influence is analyzed quantitatively using gas chromatography. The results demonstrate the obvious deleterious impact of dissolved TM ions on cell performance. At the same time, “dead Li” has also become a notable factor for a sudden capacity drop.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • mass spectrometry
  • gas chromatography
  • spectrometry