Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mitlin, David

  • Google
  • 6
  • 38
  • 250

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Dendrite Growth—Microstructure—Stress—Interrelations in Garnet Solid‐State Electrolyte18citations
  • 2024Alumina - Stabilized SEI and CEI in Potassium Metal Batteries.13citations
  • 2024Mechanical Milling – Induced Microstructure Changes in Argyrodite LPSCl Solid‐State Electrolyte Critically Affect Electrochemical Stability13citations
  • 2023Tuned Reactivity at the Lithium Metal–Argyrodite Solid State Electrolyte Interphase31citations
  • 2022Stable Anode-Free All-Solid-State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector83citations
  • 2021A Sodium-Antimony-Telluride Intermetallic Allows Sodium-Metal Cycling at 100% Depth of Discharge and as an Anode-Free Metal Battery92citations

Places of action

Chart of shared publication
Rana, Ajeet Kumar
1 / 1 shared
Mukherjee, Partha P.
4 / 6 shared
Varun, Kr
1 / 1 shared
Singh, Vipin
1 / 1 shared
Manning, Andrew Scott
1 / 1 shared
Mahapatra, Smruti Rekha
1 / 2 shared
Naik, Kaustubh G.
3 / 4 shared
Vishnugopi, Bairav S.
4 / 6 shared
Nigam, Abhineet
1 / 1 shared
Aetukuri, Naga Phani Babu
1 / 3 shared
Mcbrayer, Josefine D.
1 / 1 shared
Hao, Hongchang
5 / 5 shared
Singla, Aditya
1 / 1 shared
Liu, Pengcheng
3 / 3 shared
Watt, John
5 / 9 shared
Fincher, Cole
1 / 1 shared
Chiang, Yet-Ming
1 / 3 shared
Fang, Hong
1 / 1 shared
Wang, Yixian
4 / 5 shared
Yan, Qianqian
1 / 1 shared
Celio, Hugo
3 / 3 shared
Yang, Guang
2 / 13 shared
Jena, Puru
1 / 2 shared
Dolocan, Andrei
1 / 5 shared
Siegel, Donald J.
1 / 2 shared
Liu, Yijie
2 / 2 shared
Greene, Samuel M.
1 / 1 shared
Tsai, Wanyu
1 / 1 shared
Fang, Ruyi
2 / 2 shared
Wu, Nan
1 / 4 shared
Henkelman, Graeme
2 / 3 shared
Nguyen, Mai
1 / 1 shared
Cho, Jaeyoung
1 / 1 shared
Nanda, Jagjit
1 / 4 shared
Mukherjee, Partha P. P.
1 / 1 shared
Katyal, Naman
2 / 2 shared
Vishnugopi, Bairav S. S.
1 / 1 shared
Dong, Hui
1 / 2 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Rana, Ajeet Kumar
  • Mukherjee, Partha P.
  • Varun, Kr
  • Singh, Vipin
  • Manning, Andrew Scott
  • Mahapatra, Smruti Rekha
  • Naik, Kaustubh G.
  • Vishnugopi, Bairav S.
  • Nigam, Abhineet
  • Aetukuri, Naga Phani Babu
  • Mcbrayer, Josefine D.
  • Hao, Hongchang
  • Singla, Aditya
  • Liu, Pengcheng
  • Watt, John
  • Fincher, Cole
  • Chiang, Yet-Ming
  • Fang, Hong
  • Wang, Yixian
  • Yan, Qianqian
  • Celio, Hugo
  • Yang, Guang
  • Jena, Puru
  • Dolocan, Andrei
  • Siegel, Donald J.
  • Liu, Yijie
  • Greene, Samuel M.
  • Tsai, Wanyu
  • Fang, Ruyi
  • Wu, Nan
  • Henkelman, Graeme
  • Nguyen, Mai
  • Cho, Jaeyoung
  • Nanda, Jagjit
  • Mukherjee, Partha P. P.
  • Katyal, Naman
  • Vishnugopi, Bairav S. S.
  • Dong, Hui
OrganizationsLocationPeople

article

Dendrite Growth—Microstructure—Stress—Interrelations in Garnet Solid‐State Electrolyte

  • Mitlin, David
  • Rana, Ajeet Kumar
  • Mukherjee, Partha P.
  • Varun, Kr
  • Singh, Vipin
  • Manning, Andrew Scott
  • Mahapatra, Smruti Rekha
  • Naik, Kaustubh G.
  • Vishnugopi, Bairav S.
  • Nigam, Abhineet
  • Aetukuri, Naga Phani Babu
  • Mcbrayer, Josefine D.
Abstract

<jats:title>Abstract</jats:title><jats:p>This study illustrates how the microstructure of garnet solid‐state electrolytes (SSE) affects the stress‐state and dendrite growth. Tantalum‐doped lithium lanthanum zirconium oxide (LLZTO, Li<jats:sub>6.4</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>1.4</jats:sub>Ta<jats:sub>0.6</jats:sub>O<jats:sub>12</jats:sub>) is synthesized by powder processing and sintering (AS), or with the incorporation of intermediate‐stage high‐energy milling (M). The M compact displays higher density (91.5% vs 82.5% of theoretical), and per quantitative stereology, lower average grain size (5.4 ± 2.6 vs 21.3 ± 11.1 µm) and lower AFM‐derived RMS surface roughness contacting the Li metal (45 vs 161 nm). These differences enable symmetric M cells to electrochemically cycle at constant capacity (0.1 mAh cm<jats:sup>−2</jats:sup>) with enhanced critical current density (CCD) of 1.4 versus 0.3 mA cm<jats:sup>−2</jats:sup>. It is demonstrated that LLZTO grain size distribution and internal porosity critically affect electrical short‐circuit failure, indicating the importance of electronic properties. Lithium dendrites propagate intergranularly through regions where LLZTO grains are smaller than the bulk average (7.4 ± 3.8 µm for AS in a symmetric cell, 3.1 ± 1.4 µm for M in a half‐cell). Metal also accumulates in the otherwise empty pores of the sintered compact present along the dendrite path. Mechanistic modeling indicates that reaction and stress heterogeneities are interrelated, leading to current focusing and preferential plating at grain boundaries.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • grain
  • grain size
  • atomic force microscopy
  • grinding
  • zirconium
  • milling
  • Lanthanum
  • Lithium
  • current density
  • porosity
  • sintering
  • tantalum