Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Helmbrecht, Katharina

  • Google
  • 1
  • 9
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023In Situ Observation of Room‐Temperature Magnesium Metal Deposition on a NASICON/IL Hybrid Solid Electrolyte7citations

Places of action

Chart of shared publication
Janek, Jürgen
1 / 54 shared
Rohnke, Marcus
1 / 25 shared
Yusim, Yuriy
1 / 4 shared
Groß, Axel
1 / 4 shared
Singh, Dheeraj Kumar
1 / 3 shared
Glaser, Clarissa
1 / 1 shared
Sann, Joachim
1 / 8 shared
Wei, Zhixuan
1 / 2 shared
Kieser, Joy A.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Janek, Jürgen
  • Rohnke, Marcus
  • Yusim, Yuriy
  • Groß, Axel
  • Singh, Dheeraj Kumar
  • Glaser, Clarissa
  • Sann, Joachim
  • Wei, Zhixuan
  • Kieser, Joy A.
OrganizationsLocationPeople

article

In Situ Observation of Room‐Temperature Magnesium Metal Deposition on a NASICON/IL Hybrid Solid Electrolyte

  • Janek, Jürgen
  • Rohnke, Marcus
  • Yusim, Yuriy
  • Groß, Axel
  • Singh, Dheeraj Kumar
  • Glaser, Clarissa
  • Sann, Joachim
  • Wei, Zhixuan
  • Kieser, Joy A.
  • Helmbrecht, Katharina
Abstract

<jats:title>Abstract</jats:title><jats:p>Secondary batteries using multivalent cations as ionic charge carriers have attracted increasing attention in recent years due to the high theoretical energy density provided by multi‐electron redox reactions. However, the high charge density of these cations inevitably leads to sluggish kinetics of ion migration at room temperature, which poses a challenge for the development of solid‐state batteries using multivalent ions. Here, a magnesium ion conducting hybrid solid electrolyte (HSE) is prepared, consisting of a new NASICON‐structured material, Mg<jats:sub>0.5</jats:sub>Sn<jats:sub>2</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub>, and a small amount of magnesium ionic liquid. The HSE shows superior room‐temperature ionic conductivity of 1.11 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup> and an activation energy of 0.36 eV. Due to the good compatibility of the HSE with the magnesium metal anode, symmetric MgǀHSEǀMg cells show stable magnesium plating and stripping behavior at room temperature. Using in situ electrochemical scanning electron microscopy measurements, the room temperature growth‐induced fracture of the HSE is observed, giving unequivocal evidence for magnesium deposition. These results may serve as a starting point for understanding the magnesium deposition mechanism on solid electrolytes in solid‐state batteries.</jats:p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • energy density
  • scanning electron microscopy
  • Magnesium
  • Magnesium
  • activation