People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tang, Yushu
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024The Impact of Microstructure on Filament Growth at the Sodium Metal Anode in All‐Solid‐State Sodium Batteries
- 2023Atomic Layer Deposition Derived Zirconia Coatings on Ni‐Rich Cathodes in Solid‐State Batteries: Correlation Between Surface Constitution and Cycling Performance
- 2023Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
- 2023Inkjet‐Printed Tungsten Oxide Memristor Displaying Non‐Volatile Memory and Neuromorphic Propertiescitations
- 2023The Impact of Microstructure on Filament Growth at the Sodium Metal Anode in All‐Solid‐State Sodium Batteriescitations
- 2023Unraveling the Electrochemical Mechanism in Tin Oxide/MXene Nanocomposites as Highly Reversible Negative Electrodes for Lithium‐Ion Batteriescitations
- 2022Atomic Layer Deposition Derived Zirconia Coatings on Ni‐Rich Cathodes in Solid‐State Batteries: Correlation Between Surface Constitution and Cycling Performancecitations
- 2022Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolutioncitations
- 2021Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotentialcitations
Places of action
Organizations | Location | People |
---|
article
The Impact of Microstructure on Filament Growth at the Sodium Metal Anode in All‐Solid‐State Sodium Batteries
Abstract
In recent years, all-solid-state batteries (ASSBs) with metal anodes have witnessed significant developments due to their high energy and powerdensity as well as their excellent safety record. While intergranular dendriticlithium growth in inorganic solid electrolytes (SEs) has been extensively studied for lithium ASSBs, comparable knowledge is missing forsodium-based ASSBs. Therefore, polycrystalline Na-ᵳ7′′-alumina is employedas a SE model material to investigate the microstructural influence on sodiumfilament growth during deposition of sodium metal at the anode. The research focuses on the relationship between the microstructure, in particular grainboundary (GB) type and orientation, sodium filament growth, and sodium iontransport, utilizing in situ transmission electron microscopy (TEM) measurements in combination with crystal orientation analysis. The effect ofthe anisotropic sodium ion transport at/across GBs depending on theorientation of the sodium ion transport planes and the applied electric field on the current distribution and the position of sodium filament growth is explored. The in situ TEM analysis is validated by large field of viewpost-mortem secondary ion mass spectrometer (SIMS) analysis, in which sodium filament growth within voids and along grain boundaries is observed, contributing to the sodium network formation potentially leading to failure of batteries.