Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Guang

  • Google
  • 13
  • 95
  • 456

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2024Mechanical Milling – Induced Microstructure Changes in Argyrodite LPSCl Solid‐State Electrolyte Critically Affect Electrochemical Stability13citations
  • 2024CEERS: 7.7 μm PAH Star Formation Rate Calibration with JWST MIRI8citations
  • 2023Tuned Reactivity at the Lithium Metal–Argyrodite Solid State Electrolyte Interphase31citations
  • 2023Adverse Effects of Trace Non-polar Binder on Ion Transport in Free-standing Sulfide Solid Electrolyte Separators15citations
  • 2023CEERS: 7.7 {mu}m PAH Star Formation Rate Calibration with JWST MIRIcitations
  • 2023CEERS: 7.7 ${mu}$m PAH Star Formation Rate Calibration with JWST MIRIcitations
  • 2022Benchmarking Solid-State Batteries Containing Sulfide Separators: Effects of Electrode Composition and Stack Pressure8citations
  • 2015Effect of physical aging on fracture behavior of Te 2 As 3 Se 5 glass fibers6citations
  • 2013Physical properties of the GexSe1 − x glasses in the 0 < x < 0.42 range in correlation with their structure62citations
  • 2013Effect of Physical Aging Conditions on the Mechanical Properties of Te2As3Se5 (TAS) Glass Fibers5citations
  • 2012Fragile-strong behavior in the AsxSe1-x glass forming system in relation to structural dimensionality66citations
  • 2011Low-Voltage p- and n-Type Organic Self-Assembled Monolayer Field Effect Transistors109citations
  • 2010Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system133citations

Places of action

Chart of shared publication
Mitlin, David
2 / 6 shared
Fincher, Cole
1 / 1 shared
Hao, Hongchang
2 / 5 shared
Chiang, Yet-Ming
1 / 3 shared
Mukherjee, Partha P.
2 / 6 shared
Fang, Hong
1 / 1 shared
Watt, John
2 / 9 shared
Wang, Yixian
2 / 5 shared
Yan, Qianqian
1 / 1 shared
Celio, Hugo
2 / 3 shared
Naik, Kaustubh G.
2 / 4 shared
Vishnugopi, Bairav S.
2 / 6 shared
Jena, Puru
1 / 2 shared
Dolocan, Andrei
1 / 5 shared
Siegel, Donald J.
1 / 2 shared
Liu, Yijie
1 / 2 shared
Greene, Samuel M.
1 / 1 shared
Tsai, Wanyu
1 / 1 shared
Fang, Ruyi
1 / 2 shared
Armstrong, Beth
1 / 1 shared
Tsai, Wan-Yu
2 / 5 shared
Nanda, Jagjit
2 / 4 shared
Mills, Anna
1 / 1 shared
Browning, Katie L.
1 / 1 shared
Chen, Hongfei
1 / 1 shared
Bureau, Bruno
5 / 126 shared
Boussard-Plédel, Catherine
2 / 89 shared
Sangleboeuf, Jean-Christophe
5 / 65 shared
Lucas, Pierre
3 / 33 shared
Troles, Johann
2 / 76 shared
Rouxel, Tanguy
2 / 71 shared
Gueguen, Yann
3 / 28 shared
Boussard-Pledel, Catherine
1 / 2 shared
Roiland, Claire
2 / 23 shared
King, Ellyn A.
1 / 5 shared
Gulbiten, Ozgur
2 / 6 shared
Stellacci, Francesco
1 / 11 shared
Vieweg, Benito F.
1 / 2 shared
Novak, Michael
1 / 10 shared
Meyer-Friedrichsen, Timo
1 / 6 shared
Ebel, Alexander
1 / 4 shared
Halik, Marcus
1 / 119 shared
Jedaa, Abdesselam
1 / 7 shared
Hitsch, Andreas
1 / 1 shared
Voitchovsky, Kislon
1 / 3 shared
Spiecker, Erdmann
1 / 70 shared
Yarger, Jeffery L.
1 / 2 shared
Soignard, Emmanuel
1 / 3 shared
Chart of publication period
2024
2023
2022
2015
2013
2012
2011
2010

Co-Authors (by relevance)

  • Mitlin, David
  • Fincher, Cole
  • Hao, Hongchang
  • Chiang, Yet-Ming
  • Mukherjee, Partha P.
  • Fang, Hong
  • Watt, John
  • Wang, Yixian
  • Yan, Qianqian
  • Celio, Hugo
  • Naik, Kaustubh G.
  • Vishnugopi, Bairav S.
  • Jena, Puru
  • Dolocan, Andrei
  • Siegel, Donald J.
  • Liu, Yijie
  • Greene, Samuel M.
  • Tsai, Wanyu
  • Fang, Ruyi
  • Armstrong, Beth
  • Tsai, Wan-Yu
  • Nanda, Jagjit
  • Mills, Anna
  • Browning, Katie L.
  • Chen, Hongfei
  • Bureau, Bruno
  • Boussard-Plédel, Catherine
  • Sangleboeuf, Jean-Christophe
  • Lucas, Pierre
  • Troles, Johann
  • Rouxel, Tanguy
  • Gueguen, Yann
  • Boussard-Pledel, Catherine
  • Roiland, Claire
  • King, Ellyn A.
  • Gulbiten, Ozgur
  • Stellacci, Francesco
  • Vieweg, Benito F.
  • Novak, Michael
  • Meyer-Friedrichsen, Timo
  • Ebel, Alexander
  • Halik, Marcus
  • Jedaa, Abdesselam
  • Hitsch, Andreas
  • Voitchovsky, Kislon
  • Spiecker, Erdmann
  • Yarger, Jeffery L.
  • Soignard, Emmanuel
OrganizationsLocationPeople

article

Tuned Reactivity at the Lithium Metal–Argyrodite Solid State Electrolyte Interphase

  • Mitlin, David
  • Dolocan, Andrei
  • Hao, Hongchang
  • Siegel, Donald J.
  • Liu, Yijie
  • Mukherjee, Partha P.
  • Watt, John
  • Greene, Samuel M.
  • Wang, Yixian
  • Tsai, Wanyu
  • Celio, Hugo
  • Fang, Ruyi
  • Naik, Kaustubh G.
  • Yang, Guang
  • Vishnugopi, Bairav S.
Abstract

<jats:title>Abstract</jats:title><jats:p>Thin intermetallic Li<jats:sub>2</jats:sub>Te–LiTe<jats:sub>3</jats:sub> bilayer (0.75 µm) derived from 2D tellurene stabilizes the solid electrolyte interphase (SEI) of lithium metal and argyrodite (LPSCl, Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl) solid‐state electrolyte (SSE). Tellurene is loaded onto a standard battery separator and reacted with lithium through single‐pass mechanical rolling, or transferred directly to SSE surface by pressing. State‐of‐the‐art electrochemical performance is achieved, e.g., symmetric cell stable for 300 cycles (1800 h) at 1 mA cm<jats:sup>−2</jats:sup> and 3 mAh cm<jats:sup>−2</jats:sup> (25% DOD, 60 µm foil). Cryo‐stage focused ion beam (Cryo‐FIB) sectioning and Raman mapping demonstrate that the Li<jats:sub>2</jats:sub>Te–LiTe<jats:sub>3</jats:sub> bilayer impedes SSE decomposition. The unmodified Li–LPSCl interphase is electrochemically unstable with a geometrically heterogeneous reduction decomposition reaction front that extends deep into the SSE. Decomposition drives voiding in Li metal due to its high flux to the reaction front, as well as voiding in the SSE due to the associated volume changes. Analysis of cycled SSE found no evidence for pristine (unreacted) lithium metal filaments/dendrites, implying failure driven by decomposition phases with sufficient electrical conductivity that span electrolyte thickness. DFT calculations clarify thermodynamic stability, interfacial adhesion, and electronic transport properties of interphases, while mesoscale modeling examines interrelations between reaction front heterogeneity (SEI heterogeneity), current distribution, and localized chemo‐mechanical stresses.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • focused ion beam
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • density functional theory
  • Lithium
  • intermetallic
  • electrical conductivity
  • decomposition
  • sectioning