Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ruizpreciado, Marco A.

  • Google
  • 1
  • 16
  • 141

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Evaporated Self‐Assembled Monolayer Hole Transport Layers: Lossless Interfaces in <i>p‐i‐n</i> Perovskite Solar Cells141citations

Places of action

Chart of shared publication
Feeney, Thomas
1 / 6 shared
Starke, Ulrich
1 / 5 shared
Hossain, Ihteaz M.
1 / 4 shared
Hentschel, Mario
1 / 3 shared
Schackmar, Fabian
1 / 8 shared
Laufer, Felix
1 / 7 shared
Küster, Kathrin
1 / 4 shared
Diercks, Alexander
1 / 3 shared
Ritzer, David B.
1 / 3 shared
Fassl, Paul
1 / 8 shared
Farag, Ahmed
1 / 3 shared
Singh, Roja
1 / 3 shared
Bäuerle, Rainer
1 / 1 shared
Nejand, Bahram Abdollahi
1 / 5 shared
Li, Yang
1 / 24 shared
Paetzold, Ulrich Wilhelm
1 / 19 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Feeney, Thomas
  • Starke, Ulrich
  • Hossain, Ihteaz M.
  • Hentschel, Mario
  • Schackmar, Fabian
  • Laufer, Felix
  • Küster, Kathrin
  • Diercks, Alexander
  • Ritzer, David B.
  • Fassl, Paul
  • Farag, Ahmed
  • Singh, Roja
  • Bäuerle, Rainer
  • Nejand, Bahram Abdollahi
  • Li, Yang
  • Paetzold, Ulrich Wilhelm
OrganizationsLocationPeople

article

Evaporated Self‐Assembled Monolayer Hole Transport Layers: Lossless Interfaces in <i>p‐i‐n</i> Perovskite Solar Cells

  • Feeney, Thomas
  • Starke, Ulrich
  • Hossain, Ihteaz M.
  • Hentschel, Mario
  • Schackmar, Fabian
  • Laufer, Felix
  • Küster, Kathrin
  • Diercks, Alexander
  • Ritzer, David B.
  • Ruizpreciado, Marco A.
  • Fassl, Paul
  • Farag, Ahmed
  • Singh, Roja
  • Bäuerle, Rainer
  • Nejand, Bahram Abdollahi
  • Li, Yang
  • Paetzold, Ulrich Wilhelm
Abstract

<jats:title>Abstract</jats:title><jats:p>Engineering of the interface between perovskite absorber thin films and charge transport layers has fueled the development of perovskite solar cells (PSCs) over the past decade. For <jats:italic>p‐i‐n</jats:italic> PSCs, the development and adoption of hole transport layers utilizing self‐assembled monolayers (SAM‐HTLs) based on carbazole functional groups with phosphonic acid anchoring groups has enabled almost lossless contacts, minimizing interfacial recombination to advance power conversion efficiency in single‐junction and tandem solar cells. However, so far these materials have been deposited exclusively via solution‐based methods. Here, for the first time, vacuum‐based evaporation of the most common carbazole‐based SAM‐HTLs (2PACz, MeO‐2PACz, and Me‐4PACz) is reported. X‐ray photoelectron spectroscopy and infrared spectroscopy demonstrate no observable chemical differences in the evaporated SAMs compared to solution‐processed counterparts. Consequently, the near lossless interfacial properties are either preserved or even slightly improved as demonstrated via photoluminescence measurements and an enhancement in open‐circuit voltage. Strikingly, applying evaporated SAM‐HTLs to complete PSCs demonstrates comparable performance to their solution‐processed counterparts. Furthermore, vacuum deposition is found to improve perovskite wetting and fabrication yield on previously non‐ideal materials (namely Me‐4PACz) and to display conformal and high‐quality coating of micrometer‐sized textured surfaces, improving the versatility of these materials without sacrificing their beneficial properties.</jats:p>

Topics
  • Deposition
  • perovskite
  • impedance spectroscopy
  • surface
  • photoluminescence
  • thin film
  • evaporation
  • photoelectron spectroscopy
  • power conversion efficiency
  • infrared spectroscopy
  • scanning auger microscopy