Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Crowe, Laura E.

  • Google
  • 1
  • 9
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Thermochromic Halide Perovskite Windows with Ideal Transition Temperatures28citations

Places of action

Chart of shared publication
Schelhas, Laura T.
1 / 11 shared
Wheeler, Vincent
1 / 2 shared
Wolden, Colin A.
1 / 2 shared
Prince, Kevin J.
1 / 2 shared
Mirzokarimov, Mirzo
1 / 1 shared
Daligault, Tom
1 / 1 shared
Duell, Adam
1 / 1 shared
Rosales, Bryan A.
1 / 1 shared
Kim, Janghyun
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Schelhas, Laura T.
  • Wheeler, Vincent
  • Wolden, Colin A.
  • Prince, Kevin J.
  • Mirzokarimov, Mirzo
  • Daligault, Tom
  • Duell, Adam
  • Rosales, Bryan A.
  • Kim, Janghyun
OrganizationsLocationPeople

article

Thermochromic Halide Perovskite Windows with Ideal Transition Temperatures

  • Schelhas, Laura T.
  • Wheeler, Vincent
  • Wolden, Colin A.
  • Prince, Kevin J.
  • Mirzokarimov, Mirzo
  • Daligault, Tom
  • Duell, Adam
  • Rosales, Bryan A.
  • Kim, Janghyun
  • Crowe, Laura E.
Abstract

<jats:title>Abstract</jats:title><jats:p>Urban centers across the globe are responsible for a significant fraction of energy consumption and CO<jats:sub>2</jats:sub> emission. As urban centers continue to grow, the popularity of glass as cladding material in urban buildings is an alarming trend. Dynamic windows reduce heating and cooling loads in buildings by passive heating in cold seasons and mitigating solar heat gain in hot seasons. Here, reduced energy consumption in highly glazed buildings in a mesoscopic building energy model is demonstrated when thermochromic windows are employed. Savings are realized across eight disparate climate zones of the United States. The model is used to determine ideal critical transition temperatures of 20–27.5 °C for thermochromic windows based on metal halide perovskite materials. Ideal transition temperatures are realized experimentally in composite metal halide perovskite films composed of perovskite crystals and an adjacent reservoir phase. The transition temperature is controlled by cointercalating methanol, instead of water, with methylammonium iodide and tailoring the hydrogen‐bonding chemistry of the reservoir phase. Thermochromic windows based on metal halide perovskites represent a clear opportunity to mitigate the effects of energy‐hungry buildings.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • glass
  • glass
  • composite
  • Hydrogen